如圖,AB是⊙O的直徑,BC是⊙O的切線,連接AC交⊙O于點D,E為上一點,連結(jié)AE,BE,BE交AC于點F,且AE2=EF•EB.
(1)求證:CB=CF;
(2)若點E到弦AD的距離為1,cos∠C=,求⊙O的半徑.
考點:
切線的性質(zhì);相似三角形的判定與性質(zhì).
分析:
(1)如圖1,通過相似三角形(△AEF∽△AEB)的對應角相等推知,∠1=∠EAB;又由弦切角定理、對頂角相等證得∠2=∠3;最后根據(jù)等角對等邊證得結(jié)論;
(2)如圖2,連接OE交AC于點G,設⊙O的半徑是r.根據(jù)(1)中的相似三角形的性質(zhì)證得∠4=∠5,所以由“圓周角、弧、弦間的關系”推知點E是弧AD的中點,則OE⊥AD;然后通過解直角△ABC求得cos∠C=sin∠GAO==,則以求r的值.
解答:
(1)證明:如圖1,
∵AE2=EF•EB,
∴=.
又∠AEF=∠AEB,
∴△AEF∽△AEB,
∴∠1=∠EAB.
∵∠1=∠2,∠3=∠EAB,
∴∠2=∠3,
∴CB=CF;
(2)解:如圖2,連接OE交AC于點G,設⊙O的半徑是r.
由(1)知,△AEF∽△AEB,則∠4=∠5.
∴=.
∴OE⊥AD,
∴EG=1.
∵cos∠C=,且∠C+∠GAO=90°,
∴sin∠GAO=,
∴=,即=,
解得,r=,即⊙O的半徑是.
點評:
本題考查了切線的性質(zhì),相似三角形的判定與性質(zhì).解答(2)題的難點是推知點E是弧AD的中點.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047
已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com