用兩個全等三角形按不同方法拼成四邊形,在這些四邊形中,平行四邊形的個數(shù)是________.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

25、如圖,一個圓形街心花園,有三個出口A、B、C,每兩個出口之間有一條長60米的道路,組成正三角形ABC,在中心O處有一個亭子.為使亭子與原有的道路相通,需修三條小路OD、OE、OF,使另一出口D、E、F分別落在三角形的三邊上,且這三條小道把三角形分成三個全等的多邊形,以備種植不同的花草,
(1)請你按以上要求設計兩種不同的方案.將你的設計方案分別畫在圖(a)、圖(b)上,并附簡單的說明;
(2)要使三條小道把三角形分成三個全等的等腰梯形,應怎樣設計?把方案畫在圖(c)上,并簡單說明畫法(不需證明);
(3)請你探究出一種一般方法,使得D不論在什么位置,都能準確找到另外兩個出口E、F的位置,請寫明這個畫法.用圖(d)表示出來.
(4)你在上圖中探索出的一般方法是否適用于正方形?請結合圖(e)予以說明;這種方法可以推廣到正n邊形嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用兩個全等且邊長為4的等邊三角形△ABC和△ACD拼成菱形ABCD.把一個60°角的三角尺與這個菱形疊合,使三角尺的60°角的頂點與點A重合,兩邊分別與AB,AC重合,將三角尺繞點A按逆時針方向旋轉(zhuǎn).
(1)當三角尺的兩邊分別與菱形的兩邊BC,CD相交于點E,F(xiàn)時,(如圖1),通過觀察或測量BE,CF的長度,你能得出什么結論?(直接寫出結論,不用證明);
(2)當三角尺的兩邊分別與菱形的兩邊BC,CD的延長線相交于點E,F(xiàn)時(如圖2),你在(1)中得到的結論還成立嗎?說明理由;
(3)在上述情況中,△AEC的面積是否會等于2
3
?如果能,求BE的長;如果不能,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:用兩個邊長為3全等的等邊三角形△ABC和△ACD拼成菱形ABCD且,把一個含60°的三角尺與這個菱形疊合;如果使三角尺60°的頂點與點A重合,兩邊分別與AB、AC重合.將三角尺繞A點按逆時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于60°).

(1)當三角尺的兩邊與菱形的兩邊BC、CD相交于點E、F.
①BE、CF有何數(shù)量關系,并證明你的結論.
②接EF,求△CEF面積的最大值.
(2)連接BD,在旋轉(zhuǎn)過程中三角尺的兩邊分別與BD相交于點M、N,是否存在以BM、MN、ND為邊的直角三角形?若存在,求BM的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:三點一測叢書九年級數(shù)學上 題型:059

全等變換

  拿一張紙對折后,剪成兩個全等的三角形,把這兩個三角形一起放到圖中△ABC的位置上.試一試,如果其中一個三角形不動,怎樣移動另一個三角形,能夠得到圖中的各圖形:

  通過實際操作可以知道:(1)把△ABC沿直線BC移動線段BC那樣長的距離,可以變到△ECD的位置;(2)以BC為軸把△ABC翻折,可以變到△DBC的位置;(3)以點A為中心,把△ABC旋轉(zhuǎn),可以變到△AED的位置.這些圖形中的兩個三角形之間有這樣的關系,其中一個三角形是由另一個三角形按平行移動、翻折或旋轉(zhuǎn)等方法得到的,像這樣按一定方法把一個圖形變成另一個圖形叫做圖形變換.

  經(jīng)過圖形變換,圖形的一些性質(zhì)改變了,而另一些性質(zhì)仍然保留下來.上面三個圖形經(jīng)過變換,圖形的位置變化了,但形狀大小都沒有改變,即變換前后的圖形全等,像這樣只改變圖形的位置,而不改變其形狀大小的圖形變換叫做全等變換.

  利用圖形變換,可以為研究幾何圖形提供方便.

試一試,你能用兩個全等三角形拼成圖中的各種圖形嗎?這些圖形都可以看成是一個三角形經(jīng)過全等變換得到的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

用兩個全等且邊長為4的等邊三角形△ABC和△ACD拼成菱形ABCD.把一個60°角的三角尺與這個菱形疊合,使三角尺的60°角的頂點與點A重合,兩邊分別與AB,AC重合,將三角尺繞點A按逆時針方向旋轉(zhuǎn).
(1)當三角尺的兩邊分別與菱形的兩邊BC,CD相交于點E,F(xiàn)時,(如圖1),通過觀察或測量BE,CF的長度,你能得出什么結論?(直接寫出結論,不用證明);
(2)當三角尺的兩邊分別與菱形的兩邊BC,CD的延長線相交于點E,F(xiàn)時(如圖2),你在(1)中得到的結論還成立嗎?說明理由;
(3)在上述情況中,△AEC的面積是否會等于數(shù)學公式?如果能,求BE的長;如果不能,請說明理由.

查看答案和解析>>

同步練習冊答案