【題目】如圖,將直線y=﹣x沿y軸向下平移后的直線恰好經(jīng)過點(diǎn)A(2,﹣4),且與y軸交于點(diǎn)B,在x軸上存在一點(diǎn)P使得PA+PB的值最小,則點(diǎn)P的坐標(biāo)為

【答案】( ,0)
【解析】解:如圖所示,作點(diǎn)B關(guān)于x軸對(duì)稱的點(diǎn)B',連接AB',交x軸于P,則點(diǎn)P即為所求,
設(shè)直線y=﹣x沿y軸向下平移后的直線解析式為y=﹣x+a,
把A(2,﹣4)代入可得,a=﹣2,
∴平移后的直線為y=﹣x﹣2,
令x=0,則y=﹣2,即B(0,﹣2)
∴B'(0,2),
設(shè)直線AB'的解析式為y=kx+b,
把A(2,﹣4),B'(0,2)代入可得,
,解得 ,
∴直線AB'的解析式為y=﹣3x+2,
令y=0,則x= ,
∴P( ,0),
所以答案是:( ,0).

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解確定一次函數(shù)的表達(dá)式的相關(guān)知識(shí),掌握確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法,以及對(duì)軸對(duì)稱-最短路線問題的理解,了解已知起點(diǎn)結(jié)點(diǎn),求最短路徑;與確定起點(diǎn)相反,已知終點(diǎn)結(jié)點(diǎn),求最短路徑;已知起點(diǎn)和終點(diǎn),求兩結(jié)點(diǎn)之間的最短路徑;求圖中所有最短路徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,DE、DF是△ABC的中位線,連接EF、AD,其交點(diǎn)為O.求證:

(1)△CDE≌△DBF
(2)OA=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象在平面直角坐標(biāo)系中的位置如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)在同一平面直角坐標(biāo)系中的圖象可能是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,頂點(diǎn)為( ,﹣ )的拋物線y=ax2+bx+c過點(diǎn)M(2,0).

(1)求拋物線的解析式;
(2)點(diǎn)A是拋物線與x軸的交點(diǎn)(不與點(diǎn)M重合),點(diǎn)B是拋物線與y軸的交點(diǎn),點(diǎn)C是直線y=x+1上一點(diǎn)(處于x軸下方),點(diǎn)D是反比例函數(shù)y= (k>0)圖象上一點(diǎn),若以點(diǎn)A,B,C,D為頂點(diǎn)的四邊形是菱形,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是邊長為4cm的等邊三角形,邊AB在射線OM上,且OA=6cm,點(diǎn)D從O點(diǎn)出發(fā),沿OM的方向以1cm/s的速度運(yùn)動(dòng),當(dāng)D不與點(diǎn)A重合時(shí),將△ACD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)60°得到△BCE,連結(jié)DE.

(1)求證:△CDE是等邊三角形;
(2)如圖2,當(dāng)6<t<10時(shí),△BDE的周長是否存在最小值?若存在,求出△BDE的最小周長;若不存在,請(qǐng)說明理由;
(3)如圖3,當(dāng)點(diǎn)D在射線OM上運(yùn)動(dòng)時(shí),是否存在以D、E、B為頂點(diǎn)的三角形是直角三角形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠ACB的平分線交⊙O于D,過點(diǎn)D作DE∥AB交CA的延長線于點(diǎn)E,連接AD,BD.
(1)由AB,BD, 圍成的曲邊三角形的面積是;
(2)求證:DE是⊙O的切線;
(3)求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為BC的中點(diǎn),AE∥BC,DE∥AB.求證:四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】江蘇衛(wèi)視《最強(qiáng)大腦》曾播出一期“辨臉識(shí)人”節(jié)目,參賽選手以家庭為單位,每組家庭由爸爸媽媽和寶寶3人組成,爸爸、媽媽和寶寶分散在三塊區(qū)域,選手需在寶寶中選一個(gè)寶寶,然后分別在爸爸區(qū)域和媽媽區(qū)域中正確找出這個(gè)寶寶的父母,不考慮其他因素,僅從數(shù)學(xué)角度思考,已知在本期比賽中有A、B、C三組家庭進(jìn)行比賽.
(1)若機(jī)器人智能小度選擇A組家庭的寶寶,求小度在媽媽區(qū)域中正確找出其媽媽的概率;
(2)如果任選一個(gè)寶寶(假如選A組家庭),通過列表或樹狀圖的方法,求機(jī)器人智能小度至少正確找對(duì)寶寶父母其中一人的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形ABC的周長為30,其中一個(gè)內(nèi)角的余弦值為 ,則其腰長為

查看答案和解析>>

同步練習(xí)冊(cè)答案