【題目】下列結(jié)論正確的是( )
A.3a2b-a2b=2
B.單項(xiàng)式-x2的系數(shù)是-1
C.使式子(x+2)0有意義的x的取值范圍是x≠0
D.若分式 的值等于0,則a=±1
【答案】B
【解析】解:A、3a2b-a2b=2a2b,A不符合題意;
B、單項(xiàng)式-x2的系數(shù)是-1,B符合題意;
C、使式子(x+2)0有意義,則x+2≠0,∴x≠-2,C不符合題意;
D、分式值為0,則分子等于0且分母不等于0,a2-1=0且a+1≠0,∴a=1,D不符合題意;
故答案為:B
根據(jù)合并同類(lèi)項(xiàng)把同類(lèi)項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變,可對(duì)A作出判斷;單項(xiàng)式前面的數(shù)字因數(shù)是單項(xiàng)式的系數(shù),可對(duì)B作出判斷;根據(jù)任何不等于零的數(shù)的零次冪等于1,可對(duì)C作出判斷;根據(jù)分式的值為0.則分子等于0且分母不等于0,即可求出a的值,可對(duì)D作出判斷。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△AOB為等腰三角形,頂點(diǎn)A的坐標(biāo)(2,),底邊OB在x軸上.將△AOB繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)一定角度后得△A′O′B,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′在x軸上,則點(diǎn)O′的坐標(biāo)為( )
A. (,) B. (,) C. (,) D. (,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,∠C=90,AC<BC,D為BC上一點(diǎn),且到A,B兩點(diǎn)的距離相等.
(1)用直尺和圓規(guī),作出點(diǎn)D的位置(不寫(xiě)作法,保留作圖痕跡);
(2)連結(jié)AD,若∠B=37°,則∠CAD=度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線(xiàn)段BC上以每秒2厘米的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CA上以每秒a厘米的速度由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒)(0≤ t≤3).
(1)用的代數(shù)式表示PC的長(zhǎng)度;
(2)若點(diǎn)P、Q的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由.
(3)若點(diǎn)P、Q的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度a為多少時(shí),能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2-(2k+1)x+4(k-0.5)=0
(1)判斷方程根的情況;
(2)k為何值時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,并求出此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的個(gè)數(shù)有( )
①過(guò)兩點(diǎn)有且只有一條直線(xiàn);②連接兩點(diǎn)的線(xiàn)段叫做兩點(diǎn)間的距離;③兩點(diǎn)之間,線(xiàn)段最短;④若∠AOC=2∠BOC,則OB是∠AOC的平分線(xiàn).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C是△ABE的BE邊上一點(diǎn),點(diǎn)F在AE上,D是BC的中點(diǎn),且AB=AC=CE,給出下列結(jié)論:
①AD⊥BC;②CF⊥AE;
③∠1=∠2;④AB+BD=DE,
其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△AOB是等腰直角三角形,直線(xiàn)BD∥OA,OB=OA=1,P是線(xiàn)段AB上一動(dòng)點(diǎn),過(guò)P點(diǎn)作MN∥OB,分別交OA、BD于M、N,PC⊥PO,交BD于點(diǎn)C.
(1)求證:OP=PC;
(2)當(dāng)點(diǎn)C在射線(xiàn)BN上時(shí),設(shè)AP長(zhǎng)為m,四邊形POBC的面積為S,請(qǐng)求出S與m間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(3)當(dāng)點(diǎn)P在線(xiàn)段AB上移動(dòng)時(shí),點(diǎn)C也隨之在直線(xiàn)BN上移動(dòng),△PBC是否可能成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形時(shí)的PM的值;如果不可能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com