【題目】因式分解:(1)3x﹣12x3;(2)-2m+4m2-2m3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】d是最大的負(fù)整數(shù),e是最小的正整數(shù),f的相反數(shù)等于它本身,則d+e﹣f的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,2),與y軸的負(fù)半軸交于點(diǎn)B,且OB=6.
(1)求函數(shù)y=和y=kx+b的解析式;
(2)已知直線AB與x軸相交于點(diǎn)C,在第一象限內(nèi),求反比例函數(shù)y=的圖象上一點(diǎn)P,使得S△POC=9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=x﹣1的圖象經(jīng)過P1(x1 , y1)、P2(x2 , y2)兩點(diǎn),若x1<x2 , 則y1y2(填“>”,“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X,請你作出猜想:當(dāng)∠AMN=時(shí),結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句正確的是( 。
A. 1是最小的自然數(shù)
B. 平方等于它本身的數(shù)只有1
C. 絕對值最小的數(shù)是0
D. 任何有理數(shù)都有倒數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A(-1,0)、B(4,0)、C(0,2)三點(diǎn).
(1)求該二次函數(shù)的解析式;
(2)點(diǎn)D是該二次函數(shù)圖象上的一點(diǎn),且滿足∠DBA=∠CAO(O是坐標(biāo)原點(diǎn)),求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P是該二次函數(shù)圖象上位于一象限上的一動(dòng)點(diǎn),連接PA分別交BC,y軸與點(diǎn)E、F,若△PEB、△CEF的面積分別為S1、S2,求S1-S2的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com