【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線x=1,有下列5個結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m (am+b)(m≠1的實數(shù)).其中正確結(jié)論的有_____________ (填序號)
【答案】①③④⑤
【解析】由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.
解:①圖象開口向下,與y軸交于正半軸,對稱軸為x=1,能得到:a<0,c>0,-=1,
∴b=-2a>0,∴abc<0,此結(jié)論正確;
②當(dāng)x=-1時,由圖象知y<0,
把x=-1代入解析式得:a-b+c<0,
∴b>a+c,
故②錯誤;
③圖象開口向下,與y軸交于正半軸,對稱軸為x=1,能得到:a<0,c>0,-=1,
∴b=-2a,
∴4a+2b+c=4a-4a+c>0,
∴③正確.
④∵由①②知b=-2a且b>a+c,
∴2a<3b,④正確.
⑤∵x=1時,y=a+b+c(最大值),
x=m時,y=am2+bm+c,
∵m≠1的實數(shù),
∴a+b+c>am2+bm+c,
∴a+b>m(am+b).
故選:B.
“點睛”此題主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課外興趣小組為了解所在地區(qū)老年人的健康情況,分別作了四種不同的抽樣調(diào)查,你認(rèn)為抽樣比較合理的是( 。
A. 調(diào)查了10名老年鄰居的健康狀況
B. 在醫(yī)院調(diào)查了1000名老年人的健康狀況
C. 在公園調(diào)查了1000名老年人的健康狀況
D. 利用派出所的戶籍網(wǎng)隨機調(diào)查了該地區(qū)10%的老年人的健康狀況
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.如果兩條直線被第三條直線所截,那么內(nèi)錯角相等
B.過一點有且僅有一條直線與已知直線垂直
C.過直線外一點有且只有一條直線與已知直線平行
D.同一平面內(nèi)兩條線段不平行必相交
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(﹣1,0),B(2,0),交y軸于C(0,﹣2),過A,C畫直線.
(1)求二次函數(shù)的解析式;
(2)點P在x軸正半軸上,且PA=PC,求OP的長;
(3)點M在二次函數(shù)圖象上,以M為圓心的圓與直線AC相切,切點為H.
①若M在y軸右側(cè),且△CHM∽△AOC(點C與點A對應(yīng)),求點M的坐標(biāo);
②若⊙M的半徑為,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在端午節(jié)到來之前,學(xué)校食堂推薦了A,B,C三家粽子專賣店,對全校師生愛吃哪家店的粽子作調(diào)查,以決定最終向哪家店采購,下面的統(tǒng)計量中最值得關(guān)注的是( )
A.方差
B.平均數(shù)
C.中位數(shù)
D.眾數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com