梯形的面積被一條對角線分成1:2兩部分,則梯形的中位線分梯形的兩部分面積之比為______.
設上底長x,下底y,中位線z.
梯形的面積被一條對角線分成1:2,因為兩部分的高相等,所以
x
y
=
1
2
,z=
x+2x
2
=
3
2
x.
根據(jù)中位線的性質(zhì)中位線分成兩部分的梯形同高
x+
3x
2
2
÷(
3x
2
+2x)=
5
7

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,等腰梯形ABCD中,ADBC,AD=3,AB=6,BC=8.若DEAB,則△DEC的周長是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在梯形ABCD中,ABCD,AD=BC,過BC上一點E作直線EH,交CD于點F,交AD的延長線于點H,且EF=FH.
(1)求證:AD=DH+BE.
(2)若AB=10,CD=18,∠ADC=60°,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在直角梯形ABCD中,ADBC,AD=24cm,AB=8cm,BC=26cm,動點P從A點開始沿AD邊向D以1cm/s的速度運動,動點Q從C點開始沿CB邊向B以3cm/s的速度運動.P,Q分別從A,C同時出發(fā),當其中一點到端點時,另一點也隨之停止運動,設運動時間為t(s),t分別為何值時,四邊形PQCD是平行四邊形?等腰梯形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,ABDC,AB=10cm,CD=4cm,點P從點A出發(fā),以1.5cm/秒的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/秒的速度沿CD向終點D運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止),設P、Q同時出發(fā)并運動了t秒:
(1)當點Q運動到點D時,PQ把梯形分成兩個特殊圖形是______、______;
(2)過點D作DE⊥AB,垂足為E,當四邊形DEPQ是矩形時,求t的值;
(3)探索:是否存在這樣的t值,使四邊形PBCQ的面積是四邊形APQD面積的2倍?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ABCD,∠A=60°,∠B=30°,AD=CD=6,則AB的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

以3,5,5,11為邊作梯形,這樣的梯形有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知一個梯形的兩底長分別是4和8,一腰長為5,若另一腰長為x,則x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動點M,N同時從B點出發(fā),分別沿B?A,B?C運動,速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當點N到達終點C時,點M也隨之停止運動.設運動時間為t秒.
(1)若a=4厘米,t=1秒,則PM=______厘米;
(2)若a=5厘米,求時間t,使△PNB△PAD,并求出它們的相似比;
(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
(4)是否存在這樣的矩形:在運動過程中,存在某時刻使梯形PMBN,梯形PQDA,梯形PQCN的面積都相等?若存在,求a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案