【題目】某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過(guò)程,下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來(lái)累積利潤(rùn)s(萬(wàn)元)與銷售時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤(rùn)總和s與t之間的關(guān)系).
根據(jù)圖象提供的信息,解答下列問(wèn)題:
(1)由已知圖象上的三點(diǎn)坐標(biāo),求累積利潤(rùn)s(萬(wàn)元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤(rùn)可達(dá)到30萬(wàn)元;
(3)求第8個(gè)月公司所獲利潤(rùn)為多少萬(wàn)元?
【答案】(1) ;(2) 截止到10月末,公司累積利潤(rùn)可達(dá)到30萬(wàn)元;(3) 第8個(gè)月公司獲利潤(rùn)5.5萬(wàn)元.
【解析】試題分析:
(1)由圖可知:函數(shù)圖象經(jīng)過(guò)了點(diǎn)(1,-1.5)、點(diǎn)(2,-2)和點(diǎn)(5,2.5),設(shè)解析式為,代入三點(diǎn)的坐標(biāo),列出方程組,就可求得的值,從而得的解析式;
(2)把代入(1)中所求得的解析式,解出的值,并結(jié)合實(shí)際意義可得答案;
(3)把分別代入(1)中所得的解析式,求出對(duì)應(yīng)的的值,用可得8月份的利潤(rùn);
試題解析:
解:(1)設(shè)s與t的函數(shù)關(guān)系式為s=at2+bt+c,圖象上三點(diǎn)坐標(biāo)分別為
(1,-1.5),(2,-2),(5,2.5).分別代入,得
∴解得 ,
∴
(2)把s=30代入
解得t1=10,t2=-6(舍去).
即截止到10月末,公司累積利潤(rùn)可達(dá)到30萬(wàn)元.
(3)把t=7代入得7月末的累積利潤(rùn)為s7=10.5(萬(wàn)元).
把t=8代入得8月末的累積利潤(rùn)為s8=16(萬(wàn)元).
∴s8-s7=16-10.5=5.5(萬(wàn)元).
即第8個(gè)月公司獲利潤(rùn)5.5萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn) A 是反比例函數(shù) y 在第一象限圖象上的一個(gè)動(dòng)點(diǎn),連接 OA,以OA 為長(zhǎng),OA為寬作矩形 AOCB,且點(diǎn) C 在第四象限,隨著點(diǎn) A 的運(yùn)動(dòng),點(diǎn) C 也隨之運(yùn)動(dòng),但點(diǎn) C 始終在反比例函數(shù) y 的圖象上,則 k 的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都為1,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫圖:
(1)畫一條線段MN,使MN=;
(2)畫△ABC,三邊長(zhǎng)分別為3,,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列哪個(gè)條件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CD C.AM∥CN D.∠M=∠N
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=kx2+(2k-1)x-1與x軸交點(diǎn)的橫坐標(biāo)為x1,x2(x1<x2),則對(duì)于下列結(jié)論:(1) 當(dāng)x= -2時(shí),y=1;(2) 當(dāng)x> x2時(shí),y>0;(3)方程kx2+(2k-1)x-1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2;(4) x1<-1,x2>-1;(5) x2 -x1 = ,其中正確的結(jié)論有_______(只需填寫序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系 xoy 中,已知點(diǎn) A 的坐標(biāo)為(-2,0).
(1)如圖 1,當(dāng)點(diǎn) B 的坐標(biāo)為(0,-4)時(shí),則△AOB 的面積是 ;
(2)如圖 2,在(1)的條件下,過(guò)點(diǎn) A 作 AC⊥AB,且使 AC=AB,求第三象限內(nèi)的點(diǎn) C 的坐標(biāo);
(3)如圖 3,P 為 y 軸負(fù)半軸上一點(diǎn),過(guò)點(diǎn) P 作 PD⊥PA,且使 PD=PA,過(guò)第四象限內(nèi)的點(diǎn) D 作 DE⊥x 軸于 E,試判斷 OP-DE 的值是否發(fā)生變化.若不發(fā)生變化,請(qǐng)求其值;若發(fā)生變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過(guò)第2011次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,點(diǎn)A,E,B,C不在同一條直線上.
(1)如圖1,求證:∠E+∠C﹣∠A=180°
(2)如圖2.直線FA,CP交于點(diǎn)P,且∠BAF=∠BAE,∠DCP=∠DCE.
①試探究∠E與∠P的數(shù)量關(guān)系;
②如圖3,延長(zhǎng)CE交PA于點(diǎn)Q,若AE∥PC,∠BAQ=α(0°<α<22.5°),則∠PQC的度數(shù)為 (用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市現(xiàn)在有兩種用電收費(fèi)方法:
分時(shí)電表 | 普通電表 | |
峰時(shí)(8:00~21:00) | 谷時(shí)(21:00到次日8:00) | |
電價(jià)0.55元/千瓦·時(shí) | 電價(jià)0.35元/千瓦·時(shí) | 電價(jià)0.52元/千瓦·時(shí) |
小明家所在的小區(qū)用的電表都換成了分時(shí)電表.
解決問(wèn)題:
(1)小明家庭某月用電總量為千瓦·時(shí)(為常數(shù));谷時(shí)用電千瓦·時(shí),峰時(shí)用電千瓦·時(shí),分時(shí)計(jì)價(jià)時(shí)總價(jià)為元,普通計(jì)價(jià)時(shí)總價(jià)為元,求,與用電量的函數(shù)關(guān)系式.
(2)小明家庭使用分時(shí)電表是不是一定比普通電表合算呢?
(3)下表是路皓家最近兩個(gè)月用電的收據(jù):
谷時(shí)用電(千瓦·時(shí)) | 峰時(shí)用電(千瓦·時(shí)) |
181 | 239 |
根據(jù)上表,請(qǐng)問(wèn)用分時(shí)電表是否合算?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com