精英家教網(wǎng)如圖,在平行四邊形ABCD中,E為AB的中點,DE交AC于F,則△AEF∽
 
,相似比為
 
.若AF=6cm,則AC等于
 
分析:由平行四邊形的性質(zhì)可判斷AB=CD且AB∥CD,則可判斷△AEF∽△CDF,根據(jù)邊的關(guān)系可求解.
解答:解:∵ABCD平行四邊形,
∴AB=CD且AB∥CD;
∴∠FAE=∠DCF,∠FEA=∠CDF;
∴△AEF∽△CDF;
∵E為AB的中點,
∴AE=
1
2
AB=
1
2
CD;
∴相似比是AE:CD=1:2;
∴AE:CD=AF:CF,即6:CF=1:2,
∴CF=12cm;
∴AC=AE+CF=6+12=18cm
點評:本題考查了平行四邊形的性質(zhì)及相似三角形的判定定理及性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當(dāng)點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設(shè)運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
,OB=
5
,則下列結(jié)論中不正確的是(  )
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊答案