【題目】如圖,拋物線yx2bxc過(guò)點(diǎn)A(3,0),B(1,0),交y軸于點(diǎn)C,點(diǎn)P是該拋物線上一動(dòng)點(diǎn),點(diǎn)PC點(diǎn)沿拋物線向A點(diǎn)運(yùn)動(dòng)(點(diǎn)P不與A重合),過(guò)點(diǎn)PPDy軸交直線AC于點(diǎn)D

1)求拋物線的解析式;

2)求點(diǎn)P在運(yùn)動(dòng)的過(guò)程中線段PD長(zhǎng)度的最大值;

3APD能否構(gòu)成直角三角形?若能,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

【答案】1yx2-4x3;(2)點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線段PD長(zhǎng)度的最大值為;(3)能,點(diǎn)P的坐標(biāo)為:(10)或(2-1).

【解析】

1)把點(diǎn)A、B的坐標(biāo)代入拋物線解析式,解方程組得到bc的值,即可得解;

2)求出點(diǎn)C的坐標(biāo),再利用待定系數(shù)法求出直線AC的解析式,再根據(jù)拋物線解析式設(shè)出點(diǎn)P的坐標(biāo),然后表示出PD的長(zhǎng)度,再根據(jù)二次函數(shù)的最值問(wèn)題解答;

3)分情況討論APD是直角時(shí),點(diǎn)P與點(diǎn)B重合,求出拋物線頂點(diǎn)坐標(biāo),然后判斷出點(diǎn)P為在拋物線頂點(diǎn)時(shí),∠PAD是直角,分別寫(xiě)出點(diǎn)P的坐標(biāo)即可;

1)把點(diǎn)A(3,0)和點(diǎn)B(10)代入拋物線yx2bxc,

得:

解得

yx2-4x3

2)把x0代入yx2-4x3,得y3

C(0,3)

又∵A(3,0)

設(shè)直線AC的解析式為:ykxm,

把點(diǎn)A,C的坐標(biāo)代入得:

∴直線AC的解析式為:y=-x3

PD=-x3- (x2-4x3)=-x23x

0<x<3,

x時(shí),PD最大為

即點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線段PD長(zhǎng)度的最大值為

3APD是直角時(shí),點(diǎn)P與點(diǎn)B重合,

此時(shí),點(diǎn)P1,0),

yx24x+3=(x221,

∴拋物線的頂點(diǎn)坐標(biāo)為(2,﹣1),

A30),

∴點(diǎn)P為在拋物線頂點(diǎn)時(shí),∠PAD45°+45°=90°,

此時(shí),點(diǎn)P2,﹣1),

綜上所述,點(diǎn)P1,0)或(2,﹣1)時(shí),△APD能構(gòu)成直角三角形;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到線段CQ,連接BPDQ

(1)、如圖a,求證:△BCP≌△DCQ;

(2)、如圖,延長(zhǎng)BP交直線DQ于點(diǎn)E

如圖b,求證:BE⊥DQ

如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張老師將自己201910月至20205月的通話時(shí)長(zhǎng)(單位:分鐘)的有關(guān)數(shù)據(jù)整理如下:

201910月至20203月通話時(shí)長(zhǎng)統(tǒng)計(jì)表

時(shí)間

10

11

12

1

2

3

時(shí)長(zhǎng)(單位:分鐘)

520

530

550

610

650

660

20204月與20205月,這兩個(gè)月通話時(shí)長(zhǎng)的總和為1100分鐘根據(jù)以上信息,推斷張老師這八個(gè)月的通話時(shí)長(zhǎng)的中位數(shù)可能的最大值為( )

A.550B.580C.610D.630

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C,D是⊙O上兩點(diǎn),且,連接OCBD,OD

1)求證:OC垂直平分BD

2)過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)E,連接ADCD

①依題意補(bǔ)全圖形;

②若AD=6,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形的頂點(diǎn)坐標(biāo)分別為(11),(1-1),(-1,-1),(-11),軸上有一點(diǎn)(0,2).作點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn),作點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn),作點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn),作點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn),作點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn),作點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn),……,按此操作下去,則的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大海中某燈塔P周?chē)?/span>10海里范圍內(nèi)有暗礁,一艘海輪在點(diǎn)A處觀察燈塔P在北偏東60°方向,該海輪向正東方向航行8海里到達(dá)點(diǎn)B處,這時(shí)觀察燈塔P恰好在北偏東45°方向.如果海輪繼續(xù)向正東方向航行,會(huì)有觸礁的危險(xiǎn)嗎?試說(shuō)明理由.(參考數(shù)據(jù):≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB 是⊙O 的弦,半徑OE AB ,P AB 的延長(zhǎng)線上一點(diǎn),PC 與⊙O相切于點(diǎn) C,連結(jié) CE,交 AB 于點(diǎn) F,連結(jié) OC

1)求證:PC=PF.

2)連接 BE,若∠CEB=30°,半徑為 8,tan P ,求 FB 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

A.打開(kāi)電視,它正在播天氣預(yù)報(bào)是不可能事件

B.要考察一個(gè)班級(jí)中學(xué)生的視力情況適合用抽樣調(diào)查

C.拋擲一枚均勻的硬幣,正面朝上的概率是,若拋擲10次,就一定有5次正面朝上.

D.甲、乙兩人射中環(huán)數(shù)的方差分別為,,說(shuō)明乙的射擊成績(jī)比甲穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某款籃球架的示意圖,支架AC與底座BC所成的∠ACB65°,支架ABBC,籃球支架HEBC,且籃板DFHE于點(diǎn)E,已知底座BC1米,AH米,HF 米,HE1米.

1)求∠FHE的度數(shù);

2)已知該款籃球架符合國(guó)際籃聯(lián)規(guī)定的籃板下沿D距地面2.90米的規(guī)定,求DE的長(zhǎng)度.(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.41,1.41

查看答案和解析>>

同步練習(xí)冊(cè)答案