【題目】如圖,AB為半圓O的直徑,直線PC切半圓O于點C,AP⊥PC,P為垂足.
求證:(1)∠PAC=∠CAB;
(2)AC2=APAB.
【答案】見解析
【解析】
(1)如下圖,連接OC,由已知易得OC⊥PC,結(jié)合AP⊥PC可得OC∥AP,從而可得∠PAC=∠ACO,結(jié)合∠ACO=∠CAO即可得到∠PAC=∠CAB;
(2)由已知易得∠APC=∠ACB=90°,結(jié)合(1)中所得∠PAC=∠CAB可得△PAC∽△CAB,
這樣即可由相似三角形的性質(zhì)證得:AC2=APAB.
(1)連結(jié)OC,如圖.
∵直線PC切半圓O于點C,
∴OC⊥PC,
∵AP⊥PC,
∴OC∥AP,
∴∠PAC=∠OCA,
∵OC=OA,
∴∠CAB=∠OCA,
∴∠PAC=∠CAB;
(2)∵AB為半圓O的直徑,
∴∠ACB=90°,
∵AP⊥PC,
∴∠P=∠ACB,
又∵由(1)可知∠PAC=∠CAB,
∴△PAC∽△CAB,
∴,
∴AC2=APAB.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2﹣8ax+12a(a<0)與x軸交于A、B兩點(點A在點B的左邊),拋物線上另有一點C在第一象限,且使△OCA∽△OBC,
(1)求OC的長及的值;
(2)設(shè)直線BC與y軸交于P點,當(dāng)點C恰好在OP的垂直平分線上時,求直線BP和拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)絡(luò)中,△ABC的三個頂點都在格點上,點A、B、C的坐標(biāo)分別為A(-2,4)、B(-2,0)、C(-4,1),結(jié)合所給的平面直角坐標(biāo)系解答下列問題:
(1)畫出△ABC關(guān)于原點O中心對稱圖形△A1B1C1.
(2)平移△ABC,使點A移動到點A2(0,2),畫出平移后的△A2B2C2并寫出點B2、C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=1,M,N分別是AD,BC邊的中點,沿BQ將△BCQ折疊,若點C恰好落在MN上的點P處,則PQ的長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為等邊△ABC的高,E、F分別為線段AD、AC上的動點,且AE=CF,當(dāng)BF+CE取得最小值時,∠AFB=( 。
A. 112.5°B. 105°C. 90°D. 82.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=的圖象在第一象限的交點為P,PA⊥x軸于點A,PB⊥y軸于點B,函數(shù)y=kx+2的圖象分別交x軸,y軸于點C,D,已知△OCD的面積S△OCD=1,=
(1)求點D的坐標(biāo);
(2)求k,m的值;
(3)寫出當(dāng)x>0時,使一次函數(shù)y=kx+2的值大于反比例函數(shù)y=的值x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題背景:已知:如圖①-1,,點的位置如圖所示,連結(jié),試探究與、之間有什么數(shù)量關(guān)系,并說明理由.(將下面的解答過程補充完整,括號內(nèi)寫上相應(yīng)理由或數(shù)學(xué)式)
解:(1)與、之間的數(shù)量關(guān)系是:(或只要關(guān)系式形式正確即可)
理由:如圖①-2,過點作.
∵(作圖),
∴( ),
∴(已知)
(作圖),
∴_______( ),
∴_______( ),
∴(等量代換)
又∵(角的和差),
∴(等量代換)
總結(jié)反思:本題通過添加適當(dāng)?shù)妮o助線,從而利用平行線的性質(zhì),使問題得以解決.
(2)類比探究:如圖②,,點的位置如圖所示,連結(jié)、,請同學(xué)們類比(1)的解答過程,試探究與、之間有什么數(shù)量關(guān)系,并說明理由.
(3)拓展延伸:如圖③,,與的平分線相交于點,若,求的度數(shù),請直接寫出結(jié)果,不說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(新定義):A、B、C 為數(shù)軸上三點,若點 C 到 A 的距離是點 C 到 B 的距離的 3 倍,我們就稱點
C 是(A,B)的幸運點.
(特例感知):
(1)如圖 1,點 A 表示的數(shù)為﹣1,點 B 表示的數(shù)為 3.表示 2 的點 C 到點 A 的距離是 3, 到點 B 的距離是 1,那么點 C 是(A,B)的幸運點.
①(B,A)的幸運點表示的數(shù)是 ;A.﹣1; B.0; C.1; D.2
②試說明 A 是(C,E)的幸運點.
(2)如圖 2,M、N 為數(shù)軸上兩點,點 M 所表示的數(shù)為﹣2,點 N 所表示的數(shù)為 4,則(M,N)的幸點示的數(shù)為 .
(拓展應(yīng)用):
(3)如圖 3,A、B 為數(shù)軸上兩點,點 A 所表示的數(shù)為﹣20,點 B 所表示的數(shù)為 40.現(xiàn)有一只電子螞蟻 P 從點 B 出發(fā),以 3 個單位每秒的速度向左運動,到達點 A 停止.當(dāng) t 為何值時,P、A 和 B 三個點中恰好有一個點為其余兩點的幸運點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com