【題目】如圖,在平面直角坐標(biāo)系中.有拋物線和.拋物線經(jīng)過(guò)原點(diǎn),與x軸正半軸交于點(diǎn)A,與其對(duì)稱軸交于點(diǎn)B.P是拋物線上一點(diǎn),且在x軸上方.過(guò)點(diǎn)P作x軸的垂線交拋物線于點(diǎn)Q.過(guò)點(diǎn)Q作PQ的垂線交拋物線于點(diǎn)(不與點(diǎn)Q重合),連結(jié).設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求a的值;
(2)當(dāng)拋物線經(jīng)過(guò)原點(diǎn)時(shí),設(shè)△與△OAB重疊部分圖形的周長(zhǎng)為l.
①求的值;
②求l與m之間的函數(shù)關(guān)系式;
(3)當(dāng)h為何值時(shí),存在點(diǎn)P,使以點(diǎn)O、A、Q、為頂點(diǎn)的四邊形是軸對(duì)稱圖形?直接寫出h的值.
【答案】(1);(2)①;②;(3)h=3或或.
【解析】
試題分析:(1)把(0,0)代入即可解決問題.
(2)①用m的代數(shù)式表示PQ、QQ′,即可解決問題.
②分0<m≤3或3<m<6兩種情形,畫出圖形,利用相似三角形或銳角三角函數(shù)求出相應(yīng)線段即可解決.
(3),①當(dāng)h=3時(shí),兩個(gè)拋物線對(duì)稱軸x=3,四邊形OAQQ′是等腰梯形.②當(dāng)四邊形OQ′1Q1A是菱形時(shí),求出拋物線對(duì)稱軸即可解決問題.
試題解析:(1)∵拋物線經(jīng)過(guò)原點(diǎn),∴x=0時(shí),y=0,∴9a+4=0,∴;
(2)∵拋物線經(jīng)過(guò)原點(diǎn)時(shí),∴h=0,∵,∴.
①將化為;設(shè)P(m,),Q(m,),∴PQ=,QQ′=2m,∴=;
②如圖1中,當(dāng)0<m≤3時(shí),設(shè)PQ與OB交于點(diǎn)E,與OA交于點(diǎn)F,∵,∠PQQ′=∠BMO=90°,∴△PQQ′∽△BMO,∴∠QPQ′=∠OBM,∵EF∥BM,∴∠OEF=∠OBM,∴∠OEF=∠QPQ′,∴OE∥PQ′,∵,∴EF=,OE=,∴l(xiāng)=OF+EF+OE==4m;
當(dāng)3<m<6時(shí),如圖2中,設(shè)PQ′與AB交于點(diǎn)H,與x軸交于點(diǎn)G,PQ交AB于E,交OA于F,作HM⊥OA于M.
∵AF=6﹣m,tan∠EAF=,∴EF=,AE=,∵tan∠PGF=,PF=,∴GF=,∴AG=,∴GM=AM=,∵HG=HA==,∴l(xiāng)=GH+EH+EF+FG=.
綜上所述:.
(3)如圖3中,①當(dāng)h=3時(shí),兩個(gè)拋物線對(duì)稱軸x=3,∴點(diǎn)O、A關(guān)于對(duì)稱軸對(duì)稱,點(diǎn)Q,Q′關(guān)于對(duì)稱軸對(duì)稱,∴OA∥QQ′,OQ′=AQ,∴四邊形OAQQ′是等腰梯形,屬于軸對(duì)稱圖形.
②當(dāng)四邊形OQ′1Q1A是菱形時(shí),OQ′1=OA=6,∵Q′1Q1=OA=6,∴點(diǎn)Q1的縱坐標(biāo)為4,在RT△OHQ′1,中,OH=4,OQ′1=6,∴HQ′1=,∴h=或;
綜上所述:h=3或或時(shí),點(diǎn)O,A,Q,Q′為頂點(diǎn)的四邊形是軸對(duì)稱圖形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列去括號(hào)正確的是( )
A. a2-(2a-b+c)=a2-2a-b+c
B. -(x-y)+(xy-1)=-x-y+xy-1
C. a-(3b-2c)=a-3b-2c
D. 9y2-[x-(5y+4)]=9y2-x+5y+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)y=3x的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(1,m)和點(diǎn)B.
(1)求m的值和反比例函數(shù)的解析式.
(2)觀察圖象,直接寫出使正比例函數(shù)的值大于反比例函數(shù)的值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】溫州市2019年一季度生產(chǎn)總值(GDP)為129 800 000 000元.將129 800 000 000用科學(xué)記數(shù)法表示應(yīng)為( 。
A. 1298×108B. 1.298×108C. 1.298×1011D. 1.298×1012
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在∠AOB內(nèi),點(diǎn)M、N分別是點(diǎn)P關(guān)于直線OA、OB的對(duì)稱點(diǎn),線段MN交OA、OB于E、F,若∠EPF=α,則∠AOB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(m<0)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),該拋物線的對(duì)稱軸與直線相交于點(diǎn)E,與x軸相交于點(diǎn)D,點(diǎn)P在直線上(不與原點(diǎn)重合),連接PD,過(guò)點(diǎn)P作PF⊥PD交y軸于點(diǎn)F,連接DF.
(1)如圖①所示,若拋物線頂點(diǎn)的縱坐標(biāo)為,求拋物線的解析式;
(2)求A、B兩點(diǎn)的坐標(biāo);
(3)如圖②所示,小紅在探究點(diǎn)P的位置發(fā)現(xiàn):當(dāng)點(diǎn)P與點(diǎn)E重合時(shí),∠PDF的大小為定值,進(jìn)而猜想:對(duì)于直線上任意一點(diǎn)P(不與原點(diǎn)重合),∠PDF的大小為定值.請(qǐng)你判斷該猜想是否正確,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某此數(shù)學(xué)考試中,(1)班有30%的同學(xué)成績(jī)優(yōu)秀,(2)班有36%的同學(xué)成績(jī)優(yōu)秀,則兩班優(yōu)秀同學(xué)的人數(shù)( )
A.(1)班多B.(2)班多C.一樣多D.無(wú)法比較
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店二月份銷售各種水筆300支,三月份銷售各種水筆的支數(shù)比二月份增長(zhǎng)了10%,那么該文具店三月份銷售各種水筆_______支.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com