【題目】如圖,已知直線l:,過點(diǎn)A(0,1)作y軸的垂線交直線l于點(diǎn)B,過點(diǎn)B作直線l的垂線交y軸于點(diǎn)A1;過點(diǎn)A1作y軸的垂線交直線l于點(diǎn)B1,過點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2;……按此作法繼續(xù)下去,則點(diǎn)A2019的坐標(biāo)為_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為⊙的直徑,,為圓上的兩點(diǎn),,弦,相交于點(diǎn),
(1)求證:
(2)若,,求⊙的半徑;
(3)在(2)的條件下,過點(diǎn)作⊙的切線,交的延長線于點(diǎn),過點(diǎn)作交⊙于, 兩點(diǎn)(點(diǎn)在線段上),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下面16×8的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1個(gè)單位,△ABC是格點(diǎn)三角形(頂點(diǎn)在網(wǎng)格交點(diǎn)處),請你畫出:
(1)△ABC關(guān)于點(diǎn)P的位似△A′B′C′,且位似比為1:2;
(2)以A.B.C.D為頂點(diǎn)的所有格點(diǎn)平行四邊形ABCD的頂點(diǎn)D
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角△ABC中,∠ACB=90°,AO是△ABC的角平分線,以O為圓心,OC為半徑作圓O
(1)求證:AB是⊙O的切線;
(2)已知AO交圓O于點(diǎn)E,延長AO交圓O于點(diǎn)D,tan∠D=,求的值;
(3)如圖2,在(2)條件下,若AB與⊙O的切點(diǎn)為點(diǎn)F,連接CF交AD于點(diǎn)G,設(shè)⊙O的半徑為3,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:
第一步,分別以點(diǎn)A、D為圓心,以大于AD的長為半徑在AD兩側(cè)作弧,交于兩點(diǎn)M、N;
第二步,連接MN分別交AB、AC于點(diǎn)E、F;
第三步,連接DE、DF.
若BD=6,AF=4,CD=3,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于點(diǎn)A,B,AB=2,與y軸交于點(diǎn)C,對稱軸為直線x=2.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)D為拋物線的頂點(diǎn),連接DA、DB,試判斷△ABD的形狀,并說明理由;
(3)設(shè)P為對稱軸上一動(dòng)點(diǎn),要使PC﹣PB的值最大,求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ABCD中,E、F分別在邊AB和CD上,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比等腰三角形的定義,我們定義:有三條邊相等的凸四邊形叫做“準(zhǔn)等邊四邊形”
(1)已知:如圖1,在“準(zhǔn)等邊四邊形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的長;
(2)在探究性質(zhì)時(shí),小明發(fā)現(xiàn)一個(gè)結(jié)論:對角線互相垂直的“準(zhǔn)等邊四邊形”是菱形.請你判斷此結(jié)論是否正確,若正確,請說明理由;若不正確,請舉出反例;
(3)如圖2,在△ABC中,AB=AC,∠BAC=90°,BC=2.在AB的垂直平分線上是否存在點(diǎn)P使得以A,B,C,P為頂點(diǎn)的四邊形為“準(zhǔn)等邊四邊形”?若存在,請求出該“準(zhǔn)等邊四邊形”的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)圖象上有三個(gè)點(diǎn)(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,則y1,y2,y3的大小關(guān)系是( 。
A. y1<y2<y3B. y2<y1<y3C. y3<y1<y2D. y3<y2<y1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com