【題目】計算:
(1)-23-(-58)+(-5) ;
(2)3×(2)+38;
(3) (+-)×(-24)
(4)0.5+(15)(17)|12|
(5)
【答案】(1)30;(2)1;(3)5;(4)-10.5;(5)2
【解析】
(1)先化簡,再相加即可求解;
(2)先算乘法,再算加減;
(3)直接運用乘法的分配律計算;
(4)先計算絕對值,再化簡,相加即可求解;
(5)按照有理數(shù)混合運算的順序,先乘除后算加減,有括號的先算括號里面的.
(1) -23-(-58)+(-5) =23+58-5=30,
(2)3×(2)+38=6+38=1;
(3) (+-)×(-24)=×(-24)+×(-24)-×(-24)=94+18=5,
(4)0.5+(15)(17)|12|=0.515+1712=10.5,
(5) =11×()×32=1+2=2
科目:初中數(shù)學 來源: 題型:
【題目】結合數(shù)軸與絕對值的知識回答下列問題:
(1)探究:
①數(shù)軸上表示7和1的兩點之間的距離是_______.
②數(shù)軸上表示﹣2和﹣9的兩點之間的距離是________.
(2)歸納:
一般的,數(shù)軸上表示數(shù)m和數(shù)n的兩點之間的距離等于_______.
(3)應用:
①若數(shù)軸上表示數(shù)a的點位于﹣5與4之間,則|a+5|+|a﹣4|的值=________.
②若a表示數(shù)軸上的一個有理數(shù),且|a-3|=| a+1|,則a =______.
③若a表示數(shù)軸上的一個有理數(shù),且|a+5|+|a﹣4|>9,則有理數(shù)a的取值范圍是______.
(4)拓展:
已知,如圖A、B分別為數(shù)軸上的兩點,A點對應的數(shù)為-10,B點對應的數(shù)為70.若當電子螞蟻P從A點出發(fā),以3個單位/秒的速度向右運動,同時另一只電子螞蟻Q恰好從B點出發(fā),以2單位/秒的速度向左運動,求經(jīng)過多長時間兩只電子螞蟻在數(shù)軸上相距35個單位長度,并寫出此時點P所表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BB1∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設點D運動的時間為t秒.
(1)當t為何值時,AD=AB,并求出此時DE的長度;
(2)當△DEG與△ACB相似時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家規(guī)定個人發(fā)表文章、出版圖書所得稿費的納稅計算方法是:
(1)稿費不高于800元的不納稅;
(2)稿費高于800元,而低于4000元的應繳納超過800元的那部分稿費的14%的稅;
(3)稿費為4000元或高于4000元的應繳納全部稿費的11%的稅,
試根據(jù)上述納稅的計算方法作答:
①若王老師獲得的稿費為2400元,則應納稅________元,若王老師獲得的稿費為4000元,則應納稅________元.
②若王老師獲稿費后納稅420元,求這筆稿費是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市籃球隊在市一中選拔一名隊員.教練對王亮和李剛兩名同學進行5次3分投籃測試,每人每次投10個球,如圖記錄的是這兩名同學5次投籃中所投中的個數(shù).
姓名 | 平均數(shù)(個) | 眾數(shù)(個) | 方差 |
王亮 | 7 | ||
李剛 | 7 | 2.8 |
(1)請你根據(jù)圖中的數(shù)據(jù),填寫上表.
(2)你認為誰的成績比較穩(wěn)定,為什么?
(3)若你是教練,你打算選誰?簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義一種對正整數(shù)n的“F運算”:①當n為奇數(shù)時,結果為3n+5;②當n為偶數(shù)時,結果為(其中k是使為奇數(shù)的最小正整數(shù)),并且運算重復進行.例如:取n=26,則運算過程如圖:
那么當n=26時,第2016次“F運算”的結果是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某隧道口的橫截面是拋物線形,已知路寬AB為6米,最高點離地面的距離OC為5米.以最高點O為坐標原點,拋物線的對稱軸為y軸,1米為數(shù)軸的單位長度,建立平面直角坐標系,求:(1)以這一部分拋物線為圖象的函數(shù)解析式,并寫出x的取值范圍;(2)有一輛寬2.8米,高1米的農(nóng)用貨車(貨物最高處與地面AB的距離)能否通過此隧道?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠APB=30°,圓心在PB上的⊙O的半徑為1cm,OP=3cm,若⊙O沿BP方向平移,當⊙O與PA相切時,圓心O平移的距離為_____cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com