【題目】(2016廣西省南寧市第24題)如圖,已知拋物線(xiàn)經(jīng)過(guò)原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線(xiàn)y=x﹣2交于B,C兩點(diǎn).
(1)求拋物線(xiàn)的解析式及點(diǎn)C的坐標(biāo);
(2)求證:△ABC是直角三角形;
(3)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作MN⊥x軸與拋物線(xiàn)交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)、y=﹣x2+2x;C(-1,-3);(2)、證明過(guò)程見(jiàn)解析;(3)、(,0)或(,0)或(﹣1,0)或(5,0)
【解析】
試題分析:(1)、可設(shè)頂點(diǎn)式,把原點(diǎn)坐標(biāo)代入可求得拋物線(xiàn)解析式,聯(lián)立直線(xiàn)與拋物線(xiàn)解析式,可求得C點(diǎn)坐標(biāo);(2)、分別過(guò)A、C兩點(diǎn)作x軸的垂線(xiàn),交x軸于點(diǎn)D、E兩點(diǎn),結(jié)合A、B、C三點(diǎn)的坐標(biāo)可求得∠ABO=∠CBO=45°,可證得結(jié)論;(3)、設(shè)出N點(diǎn)坐標(biāo),可表示出M點(diǎn)坐標(biāo),從而可表示出MN、ON的長(zhǎng)度,當(dāng)△MON和△ABC相似時(shí),利用三角形相似的性質(zhì)可得=或=,可求得N點(diǎn)的坐標(biāo).
試題解析:(1)、∵頂點(diǎn)坐標(biāo)為(1,1), ∴設(shè)拋物線(xiàn)解析式為y=a(x﹣1)2+1,
又拋物線(xiàn)過(guò)原點(diǎn), ∴0=a(0﹣1)2+1,解得a=﹣1, ∴拋物線(xiàn)解析式為y=﹣(x﹣1)2+1, 即y=﹣x2+2x,
聯(lián)立拋物線(xiàn)和直線(xiàn)解析式可得,解得或,
∴B(2,0),C(﹣1,﹣3);
(2)、如圖,分別過(guò)A、C兩點(diǎn)作x軸的垂線(xiàn),交x軸于點(diǎn)D、E兩點(diǎn),
則AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3, ∴∠ABO=∠CBO=45°,即∠ABC=90°, ∴△ABC是直角三角形;
(3)、假設(shè)存在滿(mǎn)足條件的點(diǎn)N,設(shè)N(x,0),則M(x,﹣x2+2x),
∴ON=|x|,MN=|﹣x2+2x|, 由(2)在Rt△ABD和Rt△CEB中,可分別求得AB=,BC=3,
∵MN⊥x軸于點(diǎn)N ∴∠ABC=∠MNO=90°, ∴當(dāng)△ABC和△MNO相似時(shí)有=或=,
①當(dāng)=時(shí),則有=,即|x||
∵當(dāng)x=0時(shí)M、O、N不能構(gòu)成三角形, ∴x≠0, ∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,
此時(shí)N點(diǎn)坐標(biāo)為(,0)或(,0);
②當(dāng)=時(shí),則有=,即|x||﹣x+2|=3|x|,
∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1, 此時(shí)N點(diǎn)坐標(biāo)為(﹣1,0)或(5,0),
綜上可知存在滿(mǎn)足條件的N點(diǎn),其坐標(biāo)為(,0)或(,0)或(﹣1,0)或(5,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①平角就是一條直線(xiàn);②直線(xiàn)比射線(xiàn)線(xiàn)長(zhǎng);③平面內(nèi)三條互不重合的直線(xiàn)的公共點(diǎn)個(gè)數(shù)有0個(gè)、1個(gè)、2個(gè)或3個(gè);④連接兩點(diǎn)的線(xiàn)段叫兩點(diǎn)之間的距離;⑤兩條射線(xiàn)組成的圖形叫做角;⑥一條射線(xiàn)把一個(gè)角分成兩個(gè)角,這條射線(xiàn)是這個(gè)角的角平分線(xiàn),其中正確的有( )
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若直線(xiàn)AB與直線(xiàn)CD交于點(diǎn)O,OA平分∠COF,OE⊥CD.
(1)寫(xiě)出圖中與∠EOB互余的角;
(2)若∠AOF=30°,求∠BOE和∠DOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】不透明的袋子中裝有形狀、大小、質(zhì)地完全相同的5個(gè)球,其中2個(gè)黑球、3個(gè)白球,從袋子中一次摸出3個(gè)球,下列事件是不可能事件的是( 。
A. 摸出的是3個(gè)白球
B. 摸出的是3個(gè)黑球
C. 摸出的是2個(gè)白球、1個(gè)黑球
D. 摸出的是2個(gè)黑球、1個(gè)白球
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某經(jīng)濟(jì)開(kāi)發(fā)區(qū)今年1月份工業(yè)產(chǎn)值達(dá)50億元,第一季度總產(chǎn)值175億元,問(wèn)二三月份月平均增長(zhǎng)率是多少?設(shè)平均每月增長(zhǎng)的百分率為x,根據(jù)題意得方程_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的中線(xiàn),E、F分別是AD和AD延長(zhǎng)線(xiàn)上的點(diǎn),DE=DF,連接BF、CE,下列說(shuō)法:①CE=BF;②△ABD和△ACD面積相等;③BF∥CE;④△BDF≌△CDE.
其中正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016廣東省梅州市第24題)(為方便答題,可在答題卡上畫(huà)出你認(rèn)為必要的圖形)
如圖,在平面直角坐標(biāo)系中,已知拋物線(xiàn)過(guò)A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是,點(diǎn)C的坐標(biāo)是,動(dòng)點(diǎn)P在拋物線(xiàn)上.
(1)b =_________,c =_________,點(diǎn)B的坐標(biāo)為_(kāi)____________;(直接填寫(xiě)結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)過(guò)動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線(xiàn)AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線(xiàn).垂足為F,連接EF,當(dāng)線(xiàn)段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察如圖所示的圖形,寫(xiě)出下列問(wèn)題的結(jié)果:
(1)這個(gè)圖形的名稱(chēng)是 ;
(2)這個(gè)幾何體有 個(gè)面,有 個(gè)底面,有 個(gè)側(cè)面,底面是 形,側(cè)面是 形.
(3)側(cè)面的個(gè)數(shù)與底面多邊形的邊數(shù)有什么關(guān)系?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com