如圖,在△ABC中,D、E分別是邊AB、AC的中點,∠B=50°.先將△ADE沿DE折疊,點A落在三角形所在平面內(nèi)的點為A1,則∠BDA1的度數(shù)為   
【答案】分析:由折疊的性質(zhì)可知AD=A1D,根據(jù)中位線的性質(zhì)得DE∥BC;然后由兩直線平行,同位角相等推知∠ADE=∠B=50°;最后由折疊的性質(zhì)知∠ADE=∠A1DE,所以∠BDA1=180°-2∠B=80°.
解答:解:∵D、E分別是邊AB、AC的中點,
∴DE∥BC,
∴∠ADE=∠B=50°(兩直線平行,同位角相等);
又∵∠ADE=∠A1DE,
∴∠A1DA=2∠B,
∴∠BDA1=180°-2∠B=80°;
故答案是:80°.
點評:本題考查了三角形中位線定理、翻折變換(折疊問題).折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案