(1)計算:
12
-3tan30°+(π-4)0+(-
1
2
-1
(2)解方程:(2x-1)2-2(1-2x)=0.
考點:實數(shù)的運(yùn)算,零指數(shù)冪,負(fù)整數(shù)指數(shù)冪,解一元二次方程-因式分解法
專題:計算題
分析:(1)原式第一項化為最簡二次根式,第二項利用特殊角的三角函數(shù)值計算,第三項利用零指數(shù)冪法則計算,最后一項利用負(fù)指數(shù)冪法則計算即可得到結(jié)果;
(2)方程整理后,利用因式分解法求出解即可.
解答:解:(1)原式=2
3
-3×
3
3
+1-2=
3
-1;
(2)方程整理得:4x2-4x+1-2+4x=0,即(2x-1)(2x+1)=0,
解得:x1=
1
2
,x2=-
1
2
點評:此題考查了實數(shù)的運(yùn)算,以及解一元二次方程,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

初三年級教師對試卷講評課中學(xué)生參與的深度與廣度進(jìn)行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:

(1)在這次評價中,一共抽查了
 
名學(xué)生;
(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為
 
度;
(3)請將頻數(shù)分布直方圖補(bǔ)充完整;
(4)如果全市有6000名初三學(xué)生,那么在試卷評講課中,“獨立思考”的初三學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AB=10,BC=6,則sinA=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

世界上大部分國家都使用攝氏溫度(℃),但美、英等國的天氣預(yù)報仍然使用華氏溫度(℉)兩種計量之間有如下對應(yīng):
 攝氏溫度x 0 10 20 30 40 50
 華氏溫度y 32 50 68 86 104 122
如果華氏溫度y(℉)是攝氏溫度x(℃)的一次函數(shù).
(1)求出該一次函數(shù)表達(dá)式;
(2)求出華氏0度時攝氏約是多少度(精確到0.1℃);
(3)華氏溫度的值可能小于其對應(yīng)的攝氏溫度的值嗎?如果可能,請求出x的取值范圍,如不可能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列命題是假命題的是(  )
A、平行四邊形的對邊相等
B、四條邊都相等的四邊形是菱形
C、矩形的兩條對角線互相垂直
D、對角線互相平分的四邊形是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知y=y1+y2,y1與x2成正比例,y2與x-1成反比例,且當(dāng)x=0時,y=1; 當(dāng)x=-1時,y=2,則當(dāng)x=
2
時,y的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)解方程組:
x-y=1
2x+y=2
                
(2)化簡:(
2a
a-1
-
a
a+1
)•
a2-1
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:下列命題中,
(1)三點確定一個圓;    
(2)內(nèi)錯角相等;
(3)已知反比例函數(shù)y=-
2
x
,若x>1,則y>-2;
(4)對角線互相垂直平分且相等的四邊形是正方形;     
其中真命題的個數(shù)有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有三張正面分別寫有數(shù)字-1,1,2的卡片,它們背面完全相同,現(xiàn)將這三張卡片背面朝上洗勻后.
(1)隨機(jī)抽取一張,求抽到數(shù)字2的概率;
(2)隨機(jī)抽取一張,以其正面數(shù)字作為a的值,然后再從剩余的兩張卡片隨機(jī)抽一張,以其正面的數(shù)字作為b的值,請你用畫樹狀圖或列表格的方法表示所有可能的結(jié)果,并求出點(a,b)在第四象限的概率.

查看答案和解析>>

同步練習(xí)冊答案