(1997•湖南)已知△ABC中,∠A=65°40′,∠B=36°20′,則∠C的大小為
78°
78°
分析:直接根據(jù)三角形內(nèi)角和定理進行解答即可.
解答:解:∵△ABC中,∠A=65°40′,∠B=36°20′,
∴∠C=180°-(∠A+∠B)=180°-(65°40′+36°20′)=180°-102°=78°.
故答案為:78°.
點評:本題考查的是三角形的內(nèi)角和定理,即三角形內(nèi)角和是180°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1997•湖南)已知:四邊形ABCD∽四邊形A′B′C′D′,它們的周長分別為5m和3m,則S四邊形ABCD:S四邊形A′B′C′D′=
25:9
25:9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•湖南)已知⊙O1的直徑為10cm,⊙O2的直徑為6cm,O1O2=8cm,則⊙O1與⊙O2的位置關系是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•湖南)已知:線段m,n(如圖).求作:△ABC,使AB=AC,且BC=m,高AD=n.(要求寫出作法,不寫證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•湖南)已知:如圖,在矩形ABCD中,BE=DF.求證:AF=CE.

查看答案和解析>>

同步練習冊答案