(2010•泰州)如圖在8×6的網(wǎng)格圖(每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)中,⊙A的半徑為2個(gè)單位長(zhǎng)度,⊙B的半徑為1個(gè)單位長(zhǎng)度,要使運(yùn)動(dòng)的⊙B與靜止的⊙A內(nèi)切,應(yīng)將⊙B由圖示位置向左平移    個(gè)單位長(zhǎng)度.
【答案】分析:觀察圖形,⊙B與⊙A可以在右邊相內(nèi)切,也可以在左邊相內(nèi)切.
解答:解:當(dāng)⊙B與⊙A在右邊相內(nèi)切,移動(dòng)距離為4個(gè)單位長(zhǎng)度,
當(dāng)⊙B與⊙A在左邊相內(nèi)切,移動(dòng)距離為6個(gè)單位長(zhǎng)度.
點(diǎn)評(píng):運(yùn)用小圓向左移動(dòng)的方法,觀察兩圓內(nèi)切的兩種情況,分別求出移動(dòng)的距離.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•泰州)如圖,拋物線y=-x2+c與x軸交于點(diǎn)A、B,且經(jīng)過點(diǎn)D(-
(1)求c;
(2)若點(diǎn)C為拋物線上一點(diǎn),且直線AC把四邊形ABCD分成面積相等的兩部分,試說明AC平分BD,且求出直線AC的解析式;
(3)x軸上方的拋物線y=-x2+c上是否存在兩點(diǎn)P、Q,滿足Rt△AQP全等于Rt△ABP?若存在,求出P、Q兩點(diǎn);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•泰州)如圖,⊙O是O為圓心,半徑為的圓,直線y=kx+b交坐標(biāo)軸于A、B兩點(diǎn).
(1)若OA=OB
①求k;
②若b=4,點(diǎn)P為直線AB上一點(diǎn),過P點(diǎn)作⊙O的兩條切線,切點(diǎn)分別為C、D,若∠CPD=90°,求點(diǎn)P的坐標(biāo);
(2)若,且直線y=kx+b分⊙O的圓周為1:2兩部分,求b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省泰州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•泰州)如圖,⊙O是O為圓心,半徑為的圓,直線y=kx+b交坐標(biāo)軸于A、B兩點(diǎn).
(1)若OA=OB
①求k;
②若b=4,點(diǎn)P為直線AB上一點(diǎn),過P點(diǎn)作⊙O的兩條切線,切點(diǎn)分別為C、D,若∠CPD=90°,求點(diǎn)P的坐標(biāo);
(2)若,且直線y=kx+b分⊙O的圓周為1:2兩部分,求b.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省泰州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•泰州)如圖,拋物線y=-x2+c與x軸交于點(diǎn)A、B,且經(jīng)過點(diǎn)D(-
(1)求c;
(2)若點(diǎn)C為拋物線上一點(diǎn),且直線AC把四邊形ABCD分成面積相等的兩部分,試說明AC平分BD,且求出直線AC的解析式;
(3)x軸上方的拋物線y=-x2+c上是否存在兩點(diǎn)P、Q,滿足Rt△AQP全等于Rt△ABP?若存在,求出P、Q兩點(diǎn);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省泰州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•泰州)如圖在8×6的網(wǎng)格圖(每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)中,⊙A的半徑為2個(gè)單位長(zhǎng)度,⊙B的半徑為1個(gè)單位長(zhǎng)度,要使運(yùn)動(dòng)的⊙B與靜止的⊙A內(nèi)切,應(yīng)將⊙B由圖示位置向左平移    個(gè)單位長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案