如圖,若以原點為位似中心,將五邊形AEDCB放大,使放大后的五邊形的邊長是原五邊形對應邊長的3倍,請在下圖網(wǎng)格中畫出放大后的五邊形。

作圖見解析.

解析試題分析:連接OA,OB,OC,OD,OE,并延長到A′,B′,C′,D′,E′,使OA′,OB′,OC′,OD′,OE′是OA,OB,OC,OD,OE的3倍,順次連接各點即可.
試題解析:如圖所示,

五邊形A'E'D'C'B'為所求五邊形.
考點: 作圖-位似變換.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“好玩三角形”.
(1)請用直尺和圓規(guī)畫一個“好玩三角形”;
(2)如圖1,在Rt△ABC中,∠C=90°,tanA= ,求證:△ABC是“好玩三角形”;
(3)如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點C運動,記點P經(jīng)過的路程為s.
①當β=45°時,若△APQ是“好玩三角形”,試求的值;
②當tanβ的取值在什么范圍內(nèi),點P,Q在運動過程中,有且只有一個△APQ能成為“好玩三角形”.請直接寫出tanβ的取值范圍.
(4)依據(jù)(3)的條件,提出一個關于“在點P,Q的運動過程中,tanβ的取值范圍與△APQ是‘好玩三角形’的個數(shù)關系”的真命題(“好玩三角形”的個數(shù)限定不能為1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在梯形中,,點是邊的中點,連接,的延長線交的延長線于

(1)求證:;(2)若,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在△中,,平分∠.求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,網(wǎng)格圖的每個小正方形邊長均為1.△OAB的頂點均在格點上.已知△與△OAB是以O為位似中心的位似圖形,且位似比為1︰3.

(1)請在第一象限內(nèi)畫出△;
(2)試求出△的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

提出問題:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,(其中n為奇數(shù)),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關系呢?
                                         
探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
(1)如圖②:四邊形ABCD中,點E、F是AD的3等分點,點G、H是BC的3等分點,連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關系呢?
如圖③,連接EH、BE、DH,

因為△EGH與△EBH高相等,底的比是1:2,
所以SEGH=SEBH
因為△EFH與△DEH高相等,底的比是1:2,
所以SEFH=SDEH
所以SEGH+SEFH=SEBH +SDEH
即S四邊形EFHG=S四邊形EBHD
連接BD,
因為△DBE與△ABD高相等,底的比是2:3,
所以SDBE=SABD
因為△BDH與△BCD高相等,底的比是2:3,
所以SBDH=SBCD
所以SDBE +SBDH=SABD+SBCD =(SABD+SBCD)
=S四邊形ABCD
即S四邊形EBHD=S四邊形ABCD
所以S四邊形EFHG=S四邊形EBHD=×S四邊形ABCD=S四邊形ABCD
(1)如圖④:四邊形ABCD中,點E、F是AD的5等分點中最中間2個,點G、H是BC的5等分點中最中間2個,連接EG、FH,猜想:S四邊形EFHG與S四邊形ABCD之間有什么關系呢                       
驗證你的猜想:

(2)問題解決:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,連接EG、FH,(其中n為奇數(shù))
那么S四邊形EFHG與S四邊形ABCD之間的關系為:                            (不必寫出求解過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在邊長為1的正方形網(wǎng)格中有兩個三角形△ABC和△DEF,試證這兩個三角形相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在一個邊長為a(單位:cm)的正方形ABCD中.

(1)如圖1,如果N是AD中點,F(xiàn)為AB中點,連接DF,CN.
①求證:DF=CN;
②連接AC.求DH:HE: EF的值;
(2)如圖2,如果點E、M分別是線段AC、CD上的動點,假設點E從點A出發(fā),以cm/s速度沿AC向點C運動,同時點M從點C出發(fā),以1cm/s的速度沿CD向點D運動,運動時間為t(t>0),連結DE并延長交正方形的邊于點F,過點M作MN⊥DF于H,交AD于N.判斷命題“當點F是邊AB中點時,則點M是邊CD的三等分點”的真假,并說明理由. (4分)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在邊長為4的正方形ABCD中,點P在AB上從A向B運動,連接DP交AC于點Q.

(1)試證明:無論點P運動到AB上何處時,都有△ADQ≌△ABQ;
(2)當點P在AB上運動到什么位置時,△ADQ的面積是正方形ABCD面積的;
(3)若點P從點A運動到點B,再繼續(xù)在BC上運動到點C,在整個運動過程中,當點P運動到什么位置時,△ADQ恰為等腰三角形.

查看答案和解析>>

同步練習冊答案