【題目】如圖,點(diǎn)C,E,F(xiàn),B在同一直線上,點(diǎn)A,DBC異側(cè),AB∥CD,AE=DF,∠A=∠D.

(1)求證:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度數(shù).

【答案】(1)證明見解析;(2)∠D=75°.

【解析】

試題(1)易證得ABE≌△CDF,即可得AB=CD;(2)易證得ABE≌△CDF,即可得AB=CD,又由AB=CF,B=30°,即可證得ABE是等腰三角形,解答即可.

試題解析:(1)ABCD,

∴∠B=C.

ABECDF中,∠A=D C=B AE=DF,

∴△ABE≌△CDF(AAS).

AB=CD.

(2)∵△ABE≌△CDF,

BE=CF,AB=CD.

AB=CF,

CD=CF.

∴△CDF是等腰三角形,

∴∠D=×(180°C) .

∵∠C=B=30°,

∴∠D=×(180°30°)=75°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、圖2中,點(diǎn)C為線段AB上一點(diǎn),△ACM△CBN都是等邊三角形.

(1) 如圖1,線段AN與線段BM是否相等?證明你的結(jié)論;

(2) 如圖2,ANMC交于點(diǎn)E,BMCN交于點(diǎn)F,探究△CEF的形狀,并證明你的結(jié)論.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(1) (2)

(3) (4)

(5) (6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與直線y= x+2交于C、D兩點(diǎn),其中點(diǎn)C在y軸上,點(diǎn)D的坐標(biāo)為(3, ).點(diǎn)P是y軸右側(cè)的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PE⊥x軸于點(diǎn)E,交CD于點(diǎn)F.

(1)求拋物線的解析式;
(2)若點(diǎn)P的橫坐標(biāo)為m,當(dāng)m為何值時(shí),以O(shè)、C、P、F為頂點(diǎn)的四邊形是平行四邊形?請(qǐng)說明理由.
(3)若存在點(diǎn)P,使∠PCF=45°,請(qǐng)直接寫出相應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:
觀察下列等式: , ,
將以上三個(gè)等式兩邊分別相加得:

(1)直接寫出下列各式的計(jì)算結(jié)果:
=
(2)猜想并寫出: = ).
(3)探究并解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;
(2)求建筑物CD的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李和小陸從A地出發(fā),騎自行車沿同一條路行駛到B地,他們離出發(fā)地的距離S(單位:km)和行駛時(shí)間t(單位:h)之間的函數(shù)關(guān)系的圖象如圖所示,根據(jù)圖中的信息,有下列說法:

(1)他們都行駛了20 km

(2)小陸全程共用了1.5h;

(3)小李和小陸相遇后,小李的速度小于小陸的速度

(4)小李在途中停留了0.5h

其中正確的有

A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D,E兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)F在邊BC上,且AF=AD,過點(diǎn)D作DE⊥AF,垂足為點(diǎn)E.

(1)求證:DE=AB.
(2)以D為圓心,DE為半徑作圓弧交AD于點(diǎn)G.若BF=FC=1,試求 的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案