【題目】如圖,四邊形OABC是平行四邊形,點C在x軸上,反比例函數(shù)y=(x>0)的圖象經過點A(5,12),且與邊BC交于點D.若AB=BD,則點D的坐標為_____

【答案】8

【解析】解:∵反比例函數(shù)x0)的圖象經過點A5,12),k=12×5=60反比例函數(shù)的解析式為,設Dm, ),由題可得OA的解析式為y=x,AOBC可設BC的解析式為y=x+b,把Dm, )代入,可得m+b=,b=m,BC的解析式為y=x+m,令y=0,則x=m,即OC=m,平行四邊形ABCO中,AB=m,如圖所示,過DDEABE,過AAFOCF,則DEB∽△AFO,而AF=12,DE=12OA= =13,DB=13,AB=DBm=13,解得m1=5m2=8,又DA的右側,即m5m=8,D的坐標為(8 ).故答案為:(8 ).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1、2、3,正放置的四個正方形的面積依次是S1、S2、S3、S4,則S1+2S2+2S3+S4=________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某移動通訊公司提供了A,B兩種方案的通訊費用y(元)與通話時間x(分)之間的關系,如圖所示,則以下說法錯誤的是( )

A. 若通話時間少于120分,則A方案比B方案便宜20元

B. 若通話時間超過200分,則B方案比A方案便宜12元

C. 若通訊費用為60元,則B方案比A方案的通話時間多

D. 若兩種方案通訊費用相差10元,則通話時間是145分或185分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=k1x+b與雙曲線y=相交于點A(1,2),B(m,-1)兩點.

(1)分別求直線和雙曲線的表達式;

(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點,且x1<x2<0<x3,請直接寫出y1,y2,y3的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC為等邊三角形,AQ=PQ,PR=PS,PRABRPSACS,現(xiàn)有①點P在∠BAC的平分線上; AS=ARQPAR; ④△BRP≌△QSP四個結論.則對四個結論判斷正確的是(

A. 僅①和②正確 B. 僅②③正確 C. 僅①和③正確 D. 全部都正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三位運動員在相同條件下各射靶10次,每次射靶的成績如下:

甲:9,108,5,7,8,10,88,7;

乙:5,78,78,97,9,10,10

丙:7,68,5,47,63,95

1)根據(jù)以上數(shù)據(jù)完成下表:

平均數(shù)

中位數(shù)

方差

8

8

8

8

2.2

6

3

2)依據(jù)表中數(shù)據(jù)分析,哪位運動員的成績最穩(wěn)定,并簡要說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ABAC,以AB為直徑的⊙O分別與BCAC交于點D、E,過點D作⊙O的切線DF,交AC于點F

1)求證:DFAC;

2)若⊙O的半徑為4,CDF22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykxb與反比例函數(shù)yx0)交于A24),Ba,1),與x軸,y軸分別交于點CD

1)直接寫出一次函數(shù)ykxb的表達式和反比例函數(shù)yx0)的表達式;

2)求證:ADBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,對角線AC,BD相交于O點,點P是線段AD上一動點(不與點D重合),PO的延長線交BCQ點.

1)求證:四邊形PBQD為平行四邊形.

2)若AB=3cm,AD=4cmP從點A出發(fā).以1cm/s的速度向點D勻速運動.設點P的運動時間為ts,問:四邊形PBQD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.

查看答案和解析>>

同步練習冊答案