【題目】列方程解應(yīng)用題:
(1)某文藝團(tuán)體組織了一場義演為“希望工程”募捐,共售出1000張門票,已知成人票每張8元,學(xué)生票每張5元,共得票款6950元,成人票和學(xué)生票各幾張
(2)某地生產(chǎn)一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1000元;經(jīng)粗加工后銷售,每噸利潤可達(dá)4500元;經(jīng)精加工后銷售,每噸利潤漲至7500元.當(dāng)?shù)匾患肄r(nóng)工商公司收獲這種蔬菜140噸,該公司加工的生產(chǎn)能力是:如果對蔬菜進(jìn)行粗加工,每天可加工16噸;如果進(jìn)行精加工,每天可加工6噸,但兩種加工方式不能同時進(jìn)行.受季節(jié)等條件限制,公司必須在15天內(nèi)將這批蔬菜全部銷售或加工完畢,為此公司研制了三種可行方案.
方案一:將蔬菜全部進(jìn)行精加工.沒來得及進(jìn)行精加工的直接出售
方案二:盡可能多地對蔬菜進(jìn)行粗加工,沒有來得及進(jìn)行加工的蔬菜,在市場上直接銷售.
方案三:將部分蔬菜進(jìn)行精加工,其余蔬菜進(jìn)行粗加工,并恰好15天完成.
你認(rèn)為選擇哪種方案獲利最多?為什么?
【答案】(1) 成人票650張,兒童票350張;(2)方案三獲利最多.
【解析】
方案一和方案二的獲利情況可直接算出,方案三: 設(shè)精加工x噸, 本題中的相等關(guān)系是: 精加工的天數(shù)+粗加工的天數(shù)=15天.即:, 就可以列出方程. 求出精加工和粗加工個多少,從而求出獲利. 然后比較可得出答案.
解:(1)設(shè)成人票x張,則兒童票為(1000﹣x)張.
由題意得:8x+5(1000﹣x)=6950,
解得:x=650.
∴1000﹣x=1000﹣650=350張.
故成人票650張,兒童票350張.
(2)方案一獲利:7500×90+1000×(140﹣90)=72. 5萬;
方案二獲利:140×4500=63萬;
方案三獲利:
設(shè)精加工了x噸,則粗加工了(140﹣x)噸,
,
解得:x=60.
經(jīng)檢驗x=60是原方程的解.
∴7500×60+4500×(140﹣60)=81萬.
所以方案三獲利最多.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD,AB=9,AD=4. E為CD邊上一點,CE=6.
(1)求AE的長.
(2)點P從點B出發(fā),以每秒1個單位的速度沿著邊BA向終點A運動,連接PE. 設(shè)點P運動的時間為t秒,則當(dāng)t為何值時,△PAE為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a,b,c滿足(a-)2++|c-2|=0.
(1)求a,b,c的值;
(2)試問以a,b,c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,求出三角形的周長和面積;若不能構(gòu)成三角形,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,∠B的角平分線BE與AD交于點E,∠BED的角平分線EF與DC交于點F,若AB=9,DF=2FC,則BC= . (結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B坐標(biāo)為(6,0),點C坐標(biāo)為(0,6),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接BD.
(Ⅰ)求拋物線的解析式及點D的坐標(biāo);
(Ⅱ)點F是拋物線上的動點,當(dāng)∠FBA=∠BDE時,求點F的坐標(biāo);
(Ⅲ)若點M是拋物線上的動點,過點M作MN∥x軸與拋物線交于點N,點P在x軸上,點Q在坐標(biāo)平面內(nèi),以線段MN為對角線作正方形MPNQ,請寫出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意四個有理數(shù)a,b,c,d,可以組成兩個有理數(shù)對(a,b)與(c,d).我們規(guī)定:
(a,b)★(c,d)=bc﹣ad.
例如:(1,2)★(3,4)=2×3﹣1×4=2.
根據(jù)上述規(guī)定解決下列問題:
(1)有理數(shù)對(2,﹣3)★(3,﹣2)= ;
(2)若有理數(shù)對(﹣3,2x﹣1)★(1,x+1)=7,則x= ;
(3)當(dāng)滿足等式(﹣3,2x﹣1)★(k,x+k)=5+2k的x是整數(shù)時,求整數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系xOy中,已知點A(0,3),B(2,3),OC=a.將梯形ABCO沿直線y=x折疊,點A落在線段OC上,對應(yīng)點為E.
(1)求點E的坐標(biāo);
(2)①若BC∥AE,求a的值;(提示:兩邊互相平行的四邊形是平行四邊形,平行四邊形的對邊相等)
②如圖②,若梯形ABCO的面積為2a,且直線y=mx將此梯形面積分為1∶2的兩部分,求直線y=mx的函數(shù)表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com