【題目】將兩個等腰RtADE、RtABC如圖放置在一起,其中∠DAE=∠ABC90°.點EAB上,ACDE交于點H,連接BHCE,且∠BCE15°,下列結(jié)論:①AC垂直平分DE;②△CDE為等邊三角形;③tanBCD;④;正確的個數(shù)是(  )

A.1B.2C.3D.4

【答案】D

【解析】

利用等腰直角三角形的性質(zhì)得出∠DAC=∠BAC即可判斷出①正確;再用等腰直角三角形的內(nèi)角的關(guān)系即可得出∠DCE60°,即可得出②正確,判斷出∠BCD75°=∠BEC即可判斷出③正確,設(shè)出AHx,利用等腰直角三角形和等邊三角形的性質(zhì)即可得出CHEH,AB,BE最后用三角形的面積公式即可得出④正確.

解:∵△ABCADE是等腰直角三角形,

∴∠BAC=∠ACB45°,∠DAE90°,

∴∠DAC=∠BAC45°,

ADAE

AC垂直平分DE,∴①正確,

AC垂直平分DE

DCEC,∠DAC=∠EAC,

∵∠BCE15°

∴∠ACE30°,

∴∠DCE2ACE60°

∴△CDE是等邊三角形,∴②正確;

∵∠DCE60°,∠BCE15°

∴∠BCD75°,

∵∠BEC90°15°75°,

∴∠BCD=∠BEC

RtBCE中,,

tanBCD,故③正確;

設(shè)AHx,

RtAEH中,HEAHx,AEx,

RtCEH中,∠ECH30°

CHEHx,CE2HE2x,

ACAH+CH=(+1x

RtABC中,,

BEABAE

,

,

.故④正確,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+cm0有兩個不相等的實數(shù)根,下列結(jié)論:b24ac0;abc0;ab+c0m>﹣2,其中,正確的個數(shù)有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了取得扶貧工作的勝利,某市對扶貧工作人員進行了扶貧知識的培訓(xùn)與測試,隨機抽取了部分人員的測試成績作為樣本,并將成績劃分為四個不同的等級,繪制成不完整統(tǒng)計圖如下圖,請根據(jù)圖中的信息,解答下列問題;

(1)求樣本容量;

(2)補全條形圖,并填空:

(3)若全市有5000人參加了本次測試,估計本次測試成績?yōu)?/span>級的人數(shù)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的最高點的縱坐標(biāo)是2

1)求拋物線的表達式;

2)將拋物線在之間的部分記為圖象,將圖象沿直線x=1翻折,翻折后圖象記為,圖象組成G,直線:和圖象Gx軸上方的部分有兩個公共點,求k的取值范圍;

3)直線:與圖象Gx軸上方的部分分別交于A、M、PQ四點,若AM=2PQ,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程隊承接一鐵路工程,在挖掘一條500米長的隧道時,為了盡快完成,實際施工時每天挖掘的長度是原計劃的1.5倍,結(jié)果提前了25天完成了其中300米的隧道挖掘任務(wù).

(1)求實際每天挖掘多少米?

(2)由于氣候等原因,需要進一步縮短工期,要求完成整條隧道不超過70天,那么為了完成剩下的任務(wù),在實際每天挖掘長度的基礎(chǔ)上,至少每天還應(yīng)多挖掘多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以O為原點的直角坐標(biāo)系中,矩形OABC的兩邊OCOA分別在x軸、y軸的正半軸上,反比例函數(shù)yx0)的圖象與AB相交于點D.與BC相交于點E,且BD3AD6,△ODE的面積為15,若動點Px軸上,則PD+PE的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,,,,,的圓心在軸上,且半徑均為的坐標(biāo)為,坐標(biāo)為,坐標(biāo)為坐標(biāo)為射線相切于點,射線相切于點,按照這樣的規(guī)律,的橫坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側(cè)),已知A點的縱坐標(biāo)是2:

(1)求反比例函數(shù)的表達式;

(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°

(1)請用尺規(guī)作圖法,作∠ACB的平分線CD,交AB于點D(不要求寫作法,保留作圖痕跡)

(2)(1)的條件下,過點D分別作 DEAC于點EDFBC于點F.求證:四邊形CEDF是正方形.

查看答案和解析>>

同步練習(xí)冊答案