【題目】已知:如圖,△MNQ中,MQ≠NQ.
(1)請(qǐng)你以MN為一邊,在MN的同側(cè)構(gòu)造一個(gè)與△MNQ全等的三角形,畫出圖形,并簡(jiǎn)要說明構(gòu)造的方法;
(2)參考(1)中構(gòu)造全等三角形的方法解決下面問題:
如圖,在四邊形ABCD中,,∠B=∠D.求證:CD=AB.
【答案】(1)作圖見解析;(2)證明書見解析.
【解析】
試題(1)以點(diǎn)N為圓心,以MQ長(zhǎng)度為半徑畫弧,以點(diǎn)M為圓心,以NQ長(zhǎng)度為半徑畫弧,兩弧交于一點(diǎn)F,則△MNF為所畫三角形.
(2)延長(zhǎng)DA至E,使得AE=CB,連結(jié)CE.證明△EAC≌△BCA,得:∠B =∠E,AB=CE,根據(jù)等量代換可以求得答案.
試題解析:(1)如圖1,以N 為圓心,以MQ 為半徑畫圓弧;以M 為圓心,以NQ 為半徑畫圓;兩圓弧的交點(diǎn)即為所求.
(2)如圖,延長(zhǎng)DA至E,使得AE=CB,連結(jié)CE.
∵∠ACB +∠CAD =180°,∠DACDAC +∠EAC =180°,∴∠BACBCA =∠EAC.
在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,
∴△AECEAC≌△BCA (SAS).∴∠B=∠E,AB=CE.
∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是圓O的切線,切點(diǎn)為A,AB是圓O的弦。過點(diǎn)B作BC//AD,交圓O于點(diǎn)C,連接AC,過點(diǎn)C作CD//AB,交AD于點(diǎn)D。連接AO并延長(zhǎng)交BC于點(diǎn)M,交過點(diǎn)C的直線于點(diǎn)P,且BCP=ACD。
(1)判斷直線PC與圓O的位置關(guān)系,并說明理由:
(2) 若AB=9,BC=6,求PC的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點(diǎn)D是射線CB上的一個(gè)動(dòng)點(diǎn),△ADE是等邊三角形,點(diǎn)F是AB的中點(diǎn),連接EF.
(1)如圖,點(diǎn)D在線段CB上時(shí),
①求證:△AEF≌△ADC;
②連接BE,設(shè)線段CD=x,BE=y,求y2﹣x2的值;
(2)當(dāng)∠DAB=15°時(shí),求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,過點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長(zhǎng)交⊙O于點(diǎn)D,連接BD交AE于點(diǎn)F,延長(zhǎng)AE至點(diǎn)C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線;
(2)⊙O的半徑為5,tanA=,求FD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(定義)如圖1,A,B為直線l同側(cè)的兩點(diǎn),過點(diǎn)A作直線1的對(duì)稱點(diǎn)A′,連接A′B交直線l于點(diǎn)P,連接AP,則稱點(diǎn)P為點(diǎn)A,B關(guān)于直線l的“等角點(diǎn)”.
(運(yùn)用)如圖2,在平面直坐標(biāo)系xOy中,已知A(2,),B(﹣2,﹣)兩點(diǎn).
(1)C(4,),D(4,),E(4,)三點(diǎn)中,點(diǎn) 是點(diǎn)A,B關(guān)于直線x=4的等角點(diǎn);
(2)若直線l垂直于x軸,點(diǎn)P(m,n)是點(diǎn)A,B關(guān)于直線l的等角點(diǎn),其中m>2,∠APB=α,求證:tan=;
(3)若點(diǎn)P是點(diǎn)A,B關(guān)于直線y=ax+b(a≠0)的等角點(diǎn),且點(diǎn)P位于直線AB的右下方,當(dāng)∠APB=60°時(shí),求b的取值范圍(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A在第一象限,點(diǎn)A,B關(guān)于y軸對(duì)稱.
(1)若A(1,3),寫出點(diǎn)B的坐標(biāo)并在直角坐標(biāo)系中標(biāo)出.
(2)若A(a,b),且△AOB的面積為a2,求點(diǎn)B的坐標(biāo)(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在南開中學(xué)校慶78周年之際,由學(xué)生處和美術(shù)教研組共同策劃、組織了“南開中學(xué)校園明信片設(shè)計(jì)大賽”。獲得此次設(shè)計(jì)大賽組織一等獎(jiǎng)的、、、四個(gè)班級(jí)一共有75件作品獲獎(jiǎng),已知班參賽作品的獲獎(jiǎng)率為30%,班參賽作品的獲獎(jiǎng)率為40%。請(qǐng)結(jié)合兩幅統(tǒng)計(jì)圖所提供的信息,解決下列問題:
(1)四個(gè)班級(jí)一共選送了多少件作品參賽,獲獎(jiǎng)率最高的班級(jí)是哪個(gè)班;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)班的小欣和小怡同學(xué)在本次大賽中榮獲個(gè)人一等獎(jiǎng),此外、兩班各有一名同學(xué)榮獲個(gè)人一等獎(jiǎng)。南開中學(xué)校友會(huì)準(zhǔn)備從這4名同學(xué)的作品中任選兩件,制作成新年賀卡送給老校友。請(qǐng)用列表法或畫樹狀圖的方法求出這兩件作品分別來自不同班級(jí),且其中一件是小欣或小怡作品的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若兩個(gè)分式的和為(為正整數(shù)),則稱這兩個(gè)分式互為“階分式”,例如分式與互為“3階分式”.
(1)分式與 互為“5階分式”;
(2)設(shè)正數(shù)互為倒數(shù),求證:分式與互為“2階分式”;
(3)若分式與互為“1階分式”(其中為正數(shù)),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com