【題目】如圖,在中,,,.
(1)求內切圓的半徑;
(2)若移動圓心的位置,使保持與的邊、都相切.
①求半徑的取值范圍;
②當的半徑為時,求圓心的位置.
【答案】(1)1;(2)①半徑的取值范圍是:;②圓心在的平分線上,且到的距離是.
【解析】
(1)利用勾股定理即可求得△ABC的面積,然后根據S△ABC=S△OAB+S△OBC+S△OAC即可求解;
(2)①當切點E與A重合時,半徑最大,最大值為;②當⊙O的半徑為時,作于點,則,由相似三角形對應邊成比例可得,即可求得.
(1)在直角中,,
設內切圓的半徑是:,
則,
即,
解得:;
(2)①當與邊相切于時,圓的半徑最大,如圖,過圓心作于點,連接,
則,,
設半徑是,則,
即,
解得:,
則半徑的取值范圍是:;
②當與邊相切于時,圓心用表示,則,
當的半徑為時,求圓心用表示,作于點,則、、在一條直線上,
,
∴,
即,
解得:.
則圓心在的平分線上,且到的距離是.
科目:初中數學 來源: 題型:
【題目】已知,矩形中,,的垂直平分線分別交于點,垂足為.
(1)如圖1,連接,求證:四邊形為菱形;
(2)如圖2,動點分別從兩點同時出發(fā),沿和各邊勻速運動一周,即點自停止,點自停止.在運動過程中,
①已知點的速度為每秒,點的速度為每秒,運動時間為秒,當四點為頂點的四邊形是平行四邊形時,則____________.
②若點的運動路程分別為 (單位:),已知四點為頂點的四邊形是平行四邊形,則與滿足的數量關系式為____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C,E為O上的兩點,若AC平分∠EAB,CD⊥AE于點D.
(1)求證:DC是⊙O切線;
(2)若AO=6,DC=3,求DE的長;
(3)過點C作CF⊥AB于F,如圖2,若AD﹣OA=1.5,AC=3,求圖中陰影部分面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為選拔一名選手參加“美麗江門,我為僑鄉(xiāng)做代言”主題演講比賽,經研究,按下圖所示的項目和權數對選拔賽參賽選手進行考評(因排版原因統(tǒng)計圖不完整),下表是李明、張華在選拔賽中的得分情況:
服裝 | 普通話 | 主題 | 演講技巧 | |
李明 | 85 | 70 | 80 | 85 |
張華 | 90 | 75 | 75 | 80 |
結合以上信息,回答下列問題:
(1)求服裝項目在選手考評中的權數;
(2)根據你所學的知識,幫助學校在李明、張華兩人中選擇一人參加“美麗江門,我為僑鄉(xiāng)做代言”主題演講比賽,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,等腰和等腰中,,,,三點在同一直線上,求證:;
(2)如圖2,等腰中,,,是三角形外一點,且,求證:;
(3)如圖3,等邊中,是形外一點,且,
①的度數為 ;
②,,之間的關系是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,E、F是對角線AC上兩點,連接BE、BF、DE、DF,則添加下列條件①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四邊形BEDF是菱形的條件有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,輪船在A處觀測燈塔C位于北偏西70°方向上,輪船從A處以每小時20海里的速度沿南偏西50°方向勻速航行,1小時后到達碼頭B處,此時,觀測燈塔C位于北偏西25°方向上,則燈塔C與碼頭B的距離是( 。
A. 10海里 B. 10 海里 C. 10海里 D. 20海里
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數據,以二手轎車交易前的使用時間為標準分為A、B、C、D、E五類,并根據這些數據由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計圖(圖都不完整).
請根據以上信息,解答下列問題:
(1)該汽車交易市場去年共交易二手轎車 輛.
(2)把這幅條形統(tǒng)計圖補充完整.(畫圖后請標注相應的數據)
(3)在扇形統(tǒng)計圖中,D類二手轎車交易輛數所對應扇形的圓心角為 度.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com