【題目】如圖,四邊形ABCD,∠B=∠C=90°,邊BC上一點E,連結(jié)AE、DE得等邊△ABC,若=,則=_____
【答案】
【解析】
延長CB至M,使∠AMB=60°,延長BC至N,使∠DNC=60°,由直角三角形的性質(zhì)得出BM=AM,CN=DN,證明△ABM∽△DCN,得出,設(shè)AM=2a,則DN=3a,BM=AM=a,CN=DN=,證明△AME≌△END(AAS),得出AM=EN=2a,ME=ND=3a,求出BE=ME-BM=2a,CE==,即可得出答案.
解:延長CB至M,使∠AMB=60°,延長BC至N,使∠DNC=60°,如圖所示:
∵∠ABC=∠DCB=90°,
∴∠ABM=∠DCN=90°,
∴∠BAM=∠CDN=30°,
∴BM=AM,CN=DN,△ABM∽△DCN,
∴,
設(shè)AM=2a,則DN=3a,BM=AM=a,CN=DN=,
∵△AED是等邊三角形,
∴AE=DE,∠AED=60°,
∴∠AEM+∠NED=120°,
∵∠MAE+∠AEM=120°,
∴∠MAE=∠NED,
在△AME和△END中,
,
∴△AME≌△END(AAS),
∴AM=EN=2a,ME=ND=3a,
∴BE=ME-BM=2a,CE==,
∴;
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣2x2+4x+6
(1)求函數(shù)圖象的頂點P坐標及對稱軸
(2)求此拋物線與x軸的交點A、B坐標
(3)求△ABP的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=-x2+ax+b的圖象與x軸交于A(-,0),B(2,0)兩點,且與y軸交于點C.
(1)求該拋物線的解析式,并判斷△ABC的形狀;
(2)設(shè)P是x軸上方的拋物線上的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P、A 、M為頂點的三角形與ABC相似?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(a+b)x2+2cx+(b-a)=0,其中a、b、c分別為三邊的長.
(1)如果是方程的根,試判斷的形狀,并說明理由.
(2)如果方程有兩個相等的實數(shù)根,試判斷的形狀,并說明理由.
(3)如果是等邊三角形,試求這個一元二次方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD,∠A=60°,AB=6,點M從點D向點A以1個單位∕秒的速度運動,同時點N從點D向點C以2個單位∕秒的速度運動,連結(jié)BM、BN,當△BMN為等邊三角形時,=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】威麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?
(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么威麗商場至少需購進多少件A種商品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市民營經(jīng)濟持續(xù)發(fā)展,2017年城鎮(zhèn)民營企業(yè)就業(yè)人數(shù)突破20萬.為了解城鎮(zhèn)民營企業(yè)員工每月的收入狀況,統(tǒng)計局對全市城鎮(zhèn)民營企業(yè)員工2017年月平均收入隨機抽樣調(diào)查,將抽樣的數(shù)據(jù)按“2000元以內(nèi)”、“2000元~4000元”、“4000元~6000元”和“6000元以上”分為四組,進行整理,分別用A,B,C,D表示,得到下列兩幅不完整的統(tǒng)計圖.
由圖中所給出的信息解答下列問題:
(1)本次抽樣調(diào)查的員工有 .人,在扇形統(tǒng)計圖中x 的值為 .,表示“月平均收入在2000元以內(nèi)”的部分所對應扇形的圓心角的度數(shù)是 .;
(2)將不完整的條形圖補充完整,并估計該市2017年城鎮(zhèn)民營企業(yè)20萬員工中,每月的收入在“2000元~4000元”的約多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
問題情境:如圖1,在正方形中,點是對角線上的一點,點在的延長線上,且,交于點.問題解決:
(1)求證:;
(2)求的度數(shù);
探索發(fā)現(xiàn):
(3)如圖2,若點在邊上,且,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,每個小正方形的邊長為1個單位,每個小方格的頂點叫格點.
(1)畫出△ABC的AB邊上的中線CD;
(2)畫出△ABC向右平移4個單位后得到的△A1B1C1;
(3)圖中AC與A1C1的關(guān)系是: ;
(4)能使S △ABQ=S △ABC的格點Q,共有 個,在圖中分別用Q 1,Q 2,…表示出來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com