【題目】如圖,小涵和小西想要測量建筑物OP與廣告牌AB的高度.首先,小涵站在D處看到廣告牌AB的頂端A、建筑物OP的頂端O在一條直線上;然后,在陽光下,小西站在N處,此時他的影長為NE,同一時刻,測得建筑物OP的影長為PG,OP⊥PD,AB⊥PD,CD⊥PD,MN⊥PD.
(1)請你畫出表示建筑物OP在陽光下的影子PG;
(2)已知NE=1.92m,PG=24m,BD=3m,建筑物OP與廣告牌AB之間的距離PB=8.1m,小涵的眼睛到地面的距離CD=1.5m,小西的身高MN=1.6m.
①求出建筑物OP的高度;
②求出廣告牌AB的高度.
【答案】(1)如圖所示,PG即為所求;見解析;(2)①建筑物OP的高度為20m;②廣告牌AB的高度為6.5m.
【解析】
(1)過點O作ME的平行線,交PE于點G,即可得;
(2)①由△OGP∽△MEN知,即,解之可得;
②作CF⊥OP,交AB于點H,證△OFC∽△AHC得,即,求得AH的長,繼而可得答案.
(1)如圖所示,PG即為所求;
(2)①由題意知∠OPD=∠MNE,∠PGP=∠MEN,
∴△OGP∽△MEN,
∴,即,
解得:OP=20m,
∴建筑物OP的高度為20m;
②過點C作CF⊥OP于點F,交AB于點H,
則∠OFC=∠AHC=90°,∠OCF=∠ACH,FH=PB=8.1m,HC=BD=PF=1.5m,OF=OP﹣PF=18.5m,
∴△OFC∽△AHC,
∴,即,
∴AH=5m,AB=AH+BH=6.5m,
∴廣告牌AB的高度為6.5m.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象記為,它與x軸交于點O,;將繞點旋轉(zhuǎn)得,交x軸于點;將繞點旋轉(zhuǎn)得,交x軸于點;……如此進行下去,得到一條“波浪線”.若在這條“波浪線”上,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方格圖中的每個小方格都是邊長為1小正方形,我們把小正方形的頂點稱為格點,格點連線為邊的四邊形稱為“格點四邊形”,圖1中的四邊形ABCD就是一個格點四邊形.
(1)小彬在圖2的方格圖中畫了一個格點四邊形EFGH.借助方格圖回答:四邊形ABCD與四邊形EFGH相似嗎?若相似,直接寫出四邊形ABCD與四邊形EFGH的相似比;若不相似說明理由;
(2)請在圖3的方格圖中畫一個格點四邊形,使它與四邊形ABCD相似,但與四邊形ABCD、四邊形EFGH都不全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(-2,-1)、B(1,n)兩點。
(1)利用圖中條件求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于O.點M,N分別是邊BC,CD上的動點(不與點B,C,D重合),AM,AN分別交BD于E,F兩點,且∠MAN=45°,則下列結(jié)論:①MN=BM+DN;②△AEF∽△BEM;③;④△FMC是等腰三角形.其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交CD于點F,交AD的延長線于點E,若AB=4,BM=2,則△DEF的面積為( )
A.9B.8C.15D.14.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD的面積為10cm2,它的兩條對角線交于點O1,以AB、AO1為鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對角線交于點O2;同樣以AB、AO2為鄰邊作平行四邊形ABC2O2,……依此類推,則平行四邊形ABC5O5的面積為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D,E分別在邊AB、AC上,DC與BE相交于點O,且DO=2,BO=DC=6,OE=3.
(1)求證:DE∥BC;
(2)如果四邊形BCED的面積比△ADE的面積大12,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C為線段AB上一點,分別以AB、AC、CB為底作頂角為120°的等腰三角形,頂角頂點分別為D、E、F(點E、F在AB的同側(cè),點D在另一側(cè))
(1)如圖1,若點C是AB的中點,則∠CED=______°;
(2)如圖2.若點C不是AB的中點
①求證:△DEF為等邊三角形;
②連接CD,若∠ADC=90°,AD=,請求出DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com