【題目】如圖,在Rt△ABO中,斜邊AB=1.若OC//BA,∠AOC=36°,則(
A.點(diǎn)B到AO的距離為sin54°
B.點(diǎn)B到AO的距離為tan36°
C.點(diǎn)A到OC的距離為sin36°sin54°
D.點(diǎn)A到OC的距離為cos36°sin54°

【答案】C
【解析】解: B到AO的距離是指BO的長(zhǎng),
∵AB//OC,
∴∠BAO=∠AOC=36°,
∵在Rt△BOA中,∠BOA=90°,AB=1,
∴sin36°= ,
∴BO=ABsin36°=sin36°,
故A、B選項(xiàng)錯(cuò)誤;
過(guò)A作AD⊥OC于D,則AD的長(zhǎng)是點(diǎn)A到OC的距離,

∵∠BAO=36°,∠AOB=90°,
∴∠ABO=54°,
∵sin36°=
∴AD=AOsin36°,
∵sin54°= ,
∴AO=ABsin54°,
∵AB=1,
∴AD=ABsin54°sin36°=1×sin54°sin36°=sin54°sin36°,故C選項(xiàng)正確,D選項(xiàng)錯(cuò)誤;
故選:C.
根據(jù)圖形得出B到AO的距離是指BO的長(zhǎng),過(guò)A作AD⊥OC于D,則AD的長(zhǎng)是點(diǎn)A到OC的距離,根據(jù)銳角三角形函數(shù)定義得出BO=ABsin36°,即可判斷A、B;過(guò)A作AD⊥OC于D,則AD的長(zhǎng)是點(diǎn)A到OC的距離,根據(jù)銳角三角形函數(shù)定義得出AD=AOsin36°,AO=ABsin54°,求出AD,即可判斷C、D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們規(guī)定:一列數(shù)x1,x2,x3,……,xn,從這列數(shù)的第二項(xiàng)數(shù)起,每一項(xiàng)與它前面的項(xiàng)的比都等于一個(gè)常數(shù),就把這樣的一列數(shù)叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比.1,2,4,8,…….這列數(shù)就是等比數(shù)列,公比是2.

(1)等比數(shù)列5,-15,45,-135,……,請(qǐng)計(jì)算這個(gè)等比數(shù)列的公比?

(2)若一個(gè)等比數(shù)列:-9,a,b,……,的公比是-,求a,b的值.

(3)一個(gè)等比數(shù)列的第二項(xiàng)是-10,第三項(xiàng)是-20,求這組數(shù)列的第一項(xiàng)和第五項(xiàng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次學(xué)生夏令營(yíng)活動(dòng),有小學(xué)生、初中生、高中生和大學(xué)生參加,共200人,各類(lèi)學(xué)生人數(shù)比例見(jiàn)扇形統(tǒng)計(jì)圖.

(1)參加這次夏令營(yíng)活動(dòng)的初中生共有多少人?

(2)活動(dòng)組織者號(hào)召參加這次夏令營(yíng)活動(dòng)的所有學(xué)生為貧困學(xué)生捐款結(jié)果小學(xué)生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大學(xué)生每人捐款20元問(wèn)平均每人捐款是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲地到乙地,先是一段平路,然后是一段上坡路。小明騎車(chē)從甲地出發(fā),到達(dá)乙地后立即原路返回甲地,途中休息了一段時(shí)間。假設(shè)小明騎車(chē)在平路、上坡、下坡時(shí)分別保持勻速前進(jìn).已知小明騎車(chē)上坡的速度比平路上的速度每小時(shí)少5km,下坡的速度比在平路上的速度每小時(shí)多5km。設(shè)小明出發(fā)xh后,到達(dá)離甲地y km的地方,圖中的折線OABCDE表示yx之間的函數(shù)關(guān)系.

1)小明騎車(chē)在平路上的速度為 km/h;他途中休息了 h;

2)求線段AB,BC所表示的y之間的函數(shù)關(guān)系式;

3)如果小明兩次經(jīng)過(guò)途中某一地點(diǎn)的時(shí)間間隔為0.15h,那么該地點(diǎn)離甲地多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題
(1)實(shí)驗(yàn)與探究

①在下列三個(gè)圖中,給出菱形ABCD的頂點(diǎn)A,B,D的坐標(biāo)(如圖所示),寫(xiě)出圖(1),(2),(3)中點(diǎn)C的坐標(biāo),它們分別是、;
②菱形繞原點(diǎn)逆時(shí)針依照(90°,2)旋轉(zhuǎn)后點(diǎn)C對(duì)應(yīng)的點(diǎn)C1的坐標(biāo)分別是、 . (其中(90°,2)表示旋轉(zhuǎn)90°,長(zhǎng)度擴(kuò)大2倍)
(2)歸納與發(fā)現(xiàn)
①在圖4中,給出菱形ABCD的頂點(diǎn)A,B,D的坐標(biāo),求出頂點(diǎn)C的坐標(biāo);(點(diǎn)C的坐標(biāo)用含a,b,c,d,e,f的代數(shù)式表示)
②菱形繞原點(diǎn)逆時(shí)針依照(90°,2)旋轉(zhuǎn)后對(duì)應(yīng)的C1的坐標(biāo)為多少.
(3)運(yùn)用與推廣
①通過(guò)對(duì)圖(1),(2),(3),(4)的觀察和頂點(diǎn)C的坐標(biāo)的探究,你會(huì)發(fā)現(xiàn):無(wú)論菱形ABCD處于直角坐標(biāo)系的哪個(gè)位置,當(dāng)頂點(diǎn)坐標(biāo)為:A(a,b),B(c,d),C(m,n),D(e,f)時(shí),四個(gè)頂點(diǎn)的橫坐標(biāo)a,c,m,e之間的等量關(guān)系為;縱坐標(biāo)b,d,n,f之間的等量關(guān)系為(不必證明);
②通過(guò)頂點(diǎn)C的坐標(biāo)和旋轉(zhuǎn)后的C1的坐標(biāo)探究,你會(huì)發(fā)現(xiàn)無(wú)論C點(diǎn)在哪個(gè)位置,繞原點(diǎn)逆時(shí)針依照(90°,n)旋轉(zhuǎn),設(shè)C(x1 , y1),C1(x2 , y2),則x1 , x2 , y1 , y2滿足的等式是(不必證明).
(備注:有兩點(diǎn)A(x1 , y1),B(x2 , y2),則它們的中點(diǎn)P的坐標(biāo)為( , ))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索性問(wèn)題:

已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請(qǐng)回答問(wèn)題:

(1)請(qǐng)直接寫(xiě)出a、b、c的值.a=   ,b=   ,c=   ;

(2)數(shù)軸上a、b、c三個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)A、B、C同時(shí)開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒1個(gè)單位長(zhǎng)度和3個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC.

①t秒鐘過(guò)后,AC的長(zhǎng)度為   (用t的關(guān)系式表示);

請(qǐng)問(wèn):BC﹣AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明到離家2400米的體育館看球賽,進(jìn)場(chǎng)時(shí),發(fā)現(xiàn)門(mén)票還放在家中,此時(shí)離比賽還有40分鐘,于是他立即步行(勻速)回家取票,在家取票用時(shí)2分鐘,取到票后,他馬上騎自行車(chē)(勻速)趕往體育館.已知小明騎自行車(chē)從家趕往體育館比從體育館步行回家所用時(shí)間少20分鐘,騎自行車(chē)的速度是步行速度的3倍.
(1)小明步行的速度(單位:米/分鐘)是多少?
(2)小明能否在球賽開(kāi)始前趕到體育館?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為獎(jiǎng)勵(lì)在趣味運(yùn)動(dòng)會(huì)上取得好成績(jī)的員工,計(jì)劃購(gòu)買(mǎi)甲、乙兩種獎(jiǎng)品共20件,其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元.

(1)如果購(gòu)買(mǎi)甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,求甲、乙兩種獎(jiǎng)品各購(gòu)買(mǎi)了多少件;

(2)如果購(gòu)買(mǎi)乙種獎(jiǎng)品的件數(shù)不超過(guò)甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過(guò)680元,求該公司有哪幾種不同的購(gòu)買(mǎi)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,AD平分∠CAB交弧 于點(diǎn)D,連接CD、OD.下列結(jié)論:①AC∥OD;②CE=OE;③∠OED=∠AOD;④CD=DE.其中正確結(jié)論的個(gè)數(shù)有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案