如圖,已知正三角形ABC的邊長為1,E,F(xiàn),G分別是AB,BC,CA上的點(diǎn),且AE=BF=CG,設(shè)△EFG的面積為y,AE的長為x,則y關(guān)于x的函數(shù)的圖象大致是( )

A.
B.
C.
D.
【答案】分析:根據(jù)題意,易得△AEG、△BEF、△CFG三個(gè)三角形全等,且在△AEG中,AE=x,AG=1-x;可得△AEG的面積y與x的關(guān)系;進(jìn)而可判斷得則y關(guān)于x的函數(shù)的圖象的大致形狀.
解答:解:根據(jù)題意,有AE=BF=CG,且正三角形ABC的邊長為1,
故BE=CF=AG=1-x;
故△AEG、△BEF、△CFG三個(gè)三角形全等.
在△AEG中,AE=x,AG=1-x.
則S△AEG=AE×AG×sinA=x(1-x);
故y=S△ABC-3S△AEG
=-3x(1-x)=(3x2-3x+1).
故可得其大致圖象應(yīng)類似于二次函數(shù);
故答案為C.
點(diǎn)評:本題考查動(dòng)點(diǎn)問題的函數(shù)圖象問題,注意掌握各類函數(shù)圖象的特點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正三角形ABC的邊長為1,E,F(xiàn),G分別是AB,BC,CA上的點(diǎn),且AE=BF=CG,設(shè)△EFG的面積為y,AE的長為x,則y關(guān)于x的函數(shù)的圖象大致是(  )
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

29、如圖,已知正三角形的邊長2a
(1)求它的內(nèi)切圓與外接圓組成的圓環(huán)的面積;
(2)根據(jù)計(jì)算結(jié)果,要求圓環(huán)的面積,只需測量哪一條弦的大小就可算出圓環(huán)的面積?
(3)將條件中的“正三角形”改為“正方形”、“正六邊形”你能得出怎樣的結(jié)論;
(4)已知正n邊形的邊長為2a,請寫出它的內(nèi)切圓與外接圓組成的圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正三角形ABC的邊長為6,在△ABC中作內(nèi)切圓O及三個(gè)角切圓(我們把與角兩邊及三角形內(nèi)切圓都相切的圓叫角切圓),則△ABC的內(nèi)切圓O的面積為
 
;圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正三角形ABC的邊長AB是480毫米.一質(zhì)點(diǎn)D從點(diǎn)B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網(wǎng)點(diǎn)A運(yùn)動(dòng).
(1)建立合適的直角坐標(biāo)系,用運(yùn)動(dòng)時(shí)間t(秒)表示點(diǎn)D的坐標(biāo);
(2)過點(diǎn)D在三角形ABC的內(nèi)部作一個(gè)矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點(diǎn)D,使矩形DEFG是正方形(要求所表達(dá)的方式能體現(xiàn)出找點(diǎn)D的過程);
(3)過點(diǎn)D、B、C作平行四邊形,當(dāng)t為何值時(shí),由點(diǎn)C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時(shí)點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

歸納猜想:同學(xué)們,讓我們一起進(jìn)行一次研究性學(xué)習(xí):
(1)如圖1已知正三角形ABC的中心為O,半徑為R,將其沿直線l向右翻滾,當(dāng)正三角形翻滾一周時(shí),其中心O經(jīng)過的路程是多少?

(2)如圖2將半徑為R的正方形沿直線l向右翻滾,當(dāng)正方形翻滾一周時(shí),其中心O經(jīng)過的路程是多少?

(3)猜想:把正多邊形翻滾一周,其中心O所經(jīng)過的路程是多少(R為正多邊形的半徑,可參看圖2)?請說明理由.

(4)進(jìn)一步猜想:任何多邊形都有一個(gè)外接圓,若將任意圓內(nèi)接多邊形翻滾一周時(shí),其外心所經(jīng)過的路程是否是一個(gè)定值(R為多邊形外接圓的半徑)?為什么?請以任意三角形為例說明(如圖12).
通過以上猜想你可得到什么樣的結(jié)論?請寫出來.

查看答案和解析>>

同步練習(xí)冊答案