【題目】如圖,在矩形中, , ,為的中點,若為邊上的兩個動點,且,若想使得四邊形的周長最小,則的長度應(yīng)為__________.
【答案】
【解析】
要使四邊形APQE的周長最小,由于AE與PQ都是定值,只需AP+EQ的值最小即可.為此,先在BC邊上確定點P、Q的位置,可在AD上截取線段AF=DE=2,作F點關(guān)于BC的對稱點G,連接EG與BC交于一點即為Q點,過A點作FQ的平行線交BC于一點,即為P點,則此時AP+EQ=EG最小,然后過G點作BC的平行線交DC的延長線于H點,證即可.
解:如圖,在AD上截取線段AF=DE=2,作F點關(guān)于BC的對稱點G,連接EG與BC交于一點即為Q點,過A點作FQ的平行線交BC于一點,即為P點,過G點作BC的平行線交DC的延長線于H點.
∵E為CD的中點,∴CE=2
∴GH=DF=5,EH=2+4=6,∠H=90°,
∵BC//GH
∴,
∴,
∴,
∴CQ=,
∴BP=CB-PQ-CQ=7-2-.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B,
(1)求證:AD是⊙O的切線.
(2)若BC=8,tanB=,求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測得AC、BC與AB的夾角分別為45°與68°,若點C到地面的距離CD為28cm,坐墊中軸E處與點B的距離BE為4cm,求點E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E,F分別在矩形ABCD的邊AB,BC上,連接EF,將△BEF沿直線EF翻折得到△HEF,AB=8,BC=6,AE:EB=3:1.
(1)如圖1,當(dāng)∠BEF=45°時,EH的延長線交DC于點M,求HM的長;
(2)如圖2,當(dāng)FH的延長線經(jīng)過點D時,求tan∠FEH的值;
(3)如圖3,連接AH,HC,當(dāng)點F在線段BC上運動時,試探究四邊形AHCD的面積是否存在最小值?若存在,求出四邊形AHCD的面積的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量山坡上旗桿CD的高度,小明在點A處利用測角儀測得旗桿頂端D的仰角為37°,然后他沿著正對旗桿CD的方向前進(jìn)17m到達(dá)B點處,此時測得旗桿頂部D和底端C的仰角分別為58°和30°,求旗桿CD的高度(結(jié)果精確到0.1m).
(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.6,sin37°≈0.6,cos37°≈0.8,tan37°≈0.75, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公司有345臺電腦需要一次性運送到某學(xué)校,計劃租用甲、乙兩種貨車共8輛已知每輛甲種貨車一次最多運送電腦45臺、租車費用為400元,每輛乙種貨車一次最多運送電腦30臺、租車費用為280元
(Ⅰ)設(shè)租用甲種貨車輛(為非負(fù)整數(shù)),試填寫下表.
表一:
租用甲種貨車的數(shù)量/輛 | 3 | 7 | |
租用的甲種貨車最多運送電腦的數(shù)量/臺 | 135 | ||
租用的乙種貨車最多運送電腦的數(shù)量/臺 | 150 |
表二:
租用甲種貨車的數(shù)量/輛 | 3 | 7 | |
租用甲種貨車的費用/元 | 2800 | ||
租用乙種貨車的費用/元 | 280 |
(Ⅱ)給出能完成此項運送任務(wù)的最節(jié)省費用的租車方案,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD的中點,點A關(guān)于BE的對稱點為G(G在矩形ABCD內(nèi)部),連接BG并延長交CD于F.
(1)如圖1,當(dāng)AB=AD時,
①根據(jù)題意將圖1補全;
②直接寫出DF和GF之間的數(shù)量關(guān)系.
(2)如圖2,當(dāng)AB≠AD時,如果點F恰好為DC的中點,求的值.
(3)如圖3,當(dāng)AB≠AD時,如果DC=nDF,寫出求的值的思路(不必寫出計算結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),以下結(jié)論:①2a+b>0;②a+c<0;③4a+2b+c>0;④b2﹣5a2>2ac.其中正確的是( )
A. ①②B. ③④C. ②③④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點A(﹣3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1,△2,△3,△4,…,則△2019的直角頂點的坐標(biāo)為( 。
A. (8076,0)B. (8064,0)C. (8076,)D. (8064,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com