如圖(1)所示為一上面無蓋的正方體紙盒,現(xiàn)將其剪開展成平面圖,如圖(2)所示.已知展開圖中每個正方形的邊長為1.求在該展開圖中可畫出最長線段的長度?這樣的線段可畫幾條?
分析:根據(jù)圖形得出符合條件的線段有4條,根據(jù)勾股定理求出線段的長即可.
解答:解:如圖(2),AH=1+1+1=3,CH=1,
即最長線段AC的長度是:
32+12
=
10
,這樣的線段可以畫4條,
如圖(2)線段EB′、線段FM、線段A′C′、線段GH;且線段的長度都是
10
點評:本題考查了平面展開-最短路線問題和勾股定理,關(guān)鍵是能正確畫出圖形,題目比較典型,難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1)所示,一張平行四邊形紙片ABCD,AB=10,AD=6,BD=8,沿對角線BD把這張紙片剪成△AB1D1和△CB2D2兩個三角形(如圖(2)所示),將△AB1D1沿直線AB1方向移動(點B2始終在AB1上,AB1與CD2始終保持平行),當(dāng)點A與B2重合時停止平移,在平移過程中,AD1與B2D2交于點E,B2C與B1D1交于點F,
(1)當(dāng)△AB1D1平移到圖(3)的位置時,試判斷四邊形B2FD1E是什么四邊形?并證明你的結(jié)論;
(2)設(shè)平移距離B2B1為x,四邊形B2FD1E的面積為y,求y與x的函數(shù)關(guān)系式;并求出四邊形B2FD1E的面積的最大值;
(3)連接B1C(請在圖(3)中畫出).當(dāng)平移距離B2B1的值是多少時,△B1B2F與△B1CF相似?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示為一上細(xì)下粗的容器,上部橫截面積為S,下部橫截面積為2S,內(nèi)有密度為ρ的液體,容器的底部有高為h的氣泡,當(dāng)氣泡上升,從細(xì)部升出液面時(液面仍在細(xì)部),重力所做的功為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:貴州省中考真題 題型:解答題

如圖(1)所示,一張平行四邊形紙片ABCD,AB=10,AD=6,BD=8,沿對角線BD把這張紙片剪成△AB1D1和△CB2D2兩個三角形(如圖(2)所示),將△AB1D1沿直線AB1方向移動(點B2始終在AB1上,AB1與CD2始終保持平行),當(dāng)點A與B2重合時停止平移,在平移過程中,AD1與B2D2交于點E,B2C與B1D1交于點F。
(1)當(dāng)△AB1D1平移到圖(3)的位置時,試判斷四邊形B2FD1E是什么四邊形?并證明你的結(jié)論;
(2)設(shè)平移距離B2B1為x,四邊形B2FD1E的面積為y,求y與x的函數(shù)關(guān)系式;并求出四邊形B2FD1E的面積的最大值;
(3)連結(jié)B1C(請在圖(3)中畫出)。當(dāng)平移距離B2B1的值是多少時,△B1B2F與△B1CF相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年貴州省遵義市鳳岡縣石徑中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖(1)所示,一張平行四邊形紙片ABCD,AB=10,AD=6,BD=8,沿對角線BD把這張紙片剪成△AB1D1和△CB2D2兩個三角形(如圖(2)所示),將△AB1D1沿直線AB1方向移動(點B2始終在AB1上,AB1與CD2始終保持平行),當(dāng)點A與B2重合時停止平移,在平移過程中,AD1與B2D2交于點E,B2C與B1D1交于點F,
(1)當(dāng)△AB1D1平移到圖(3)的位置時,試判斷四邊形B2FD1E是什么四邊形?并證明你的結(jié)論;
(2)設(shè)平移距離B2B1為x,四邊形B2FD1E的面積為y,求y與x的函數(shù)關(guān)系式;并求出四邊形B2FD1E的面積的最大值;
(3)連接B1C(請在圖(3)中畫出).當(dāng)平移距離B2B1的值是多少時,△B1B2F與△B1CF相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2008•遵義)如圖(1)所示,一張平行四邊形紙片ABCD,AB=10,AD=6,BD=8,沿對角線BD把這張紙片剪成△AB1D1和△CB2D2兩個三角形(如圖(2)所示),將△AB1D1沿直線AB1方向移動(點B2始終在AB1上,AB1與CD2始終保持平行),當(dāng)點A與B2重合時停止平移,在平移過程中,AD1與B2D2交于點E,B2C與B1D1交于點F,
(1)當(dāng)△AB1D1平移到圖(3)的位置時,試判斷四邊形B2FD1E是什么四邊形?并證明你的結(jié)論;
(2)設(shè)平移距離B2B1為x,四邊形B2FD1E的面積為y,求y與x的函數(shù)關(guān)系式;并求出四邊形B2FD1E的面積的最大值;
(3)連接B1C(請在圖(3)中畫出).當(dāng)平移距離B2B1的值是多少時,△B1B2F與△B1CF相似?

查看答案和解析>>

同步練習(xí)冊答案