【題目】已知:BD的直徑,O為圓心,點A為圓上一點,過點B的切線交DA的延長線于點F,點C上一點,且,連接BCAD于點E,連接AC

如圖1,求證:;

如圖2,點H內(nèi)部一點,連接OHCH時,求證:

的條件下,若的半徑為10,求CE的長.

【答案】(1)見解析;(2)見解析;(3).

【解析】

由BD為的直徑,得到,根據(jù)切線的性質(zhì)得到,根據(jù)等腰三角形的性質(zhì)得到,等量代換即可得到結(jié)論;

如圖2,連接OC,根據(jù)平行線的判定和性質(zhì)得到,根據(jù)等腰三角形的性質(zhì)得到,,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

根據(jù)相似三角形的性質(zhì)得到,根據(jù)勾股定理得到,根據(jù)全等三角形的性質(zhì)得到,根據(jù)射影定理得到,根據(jù)相交弦定理即可得到結(jié)論.

的直徑,

,

的切線,

,

,

,

;

如圖2,連接OC,

,

,

,

,

,

,

,

知,

,

的半徑為10,

,

中,

,

,

,

,

,

,

BC交于E,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB30,∠AOB內(nèi)有一定點P,且OP10.在OA上有一動點Q,OB上有一動點R.若ΔPQR周長最小,則最小周長是___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小燁在探究數(shù)軸上兩點間距離時發(fā)現(xiàn):若兩點在軸上或與軸平行,兩點的橫坐標分別為,則兩點間距離為;兩點在軸上或與軸平行,兩點的縱坐標分別為,則兩點間距離為.據(jù)此,小燁猜想:對于平面內(nèi)任意兩點,兩點間的距離為.

(1)請你利用下圖,試證明:;

(2)若,試在軸上求一點,使的距離最短,并求出的最小值和點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程隊用甲、乙兩臺隧道挖掘機從兩個方向挖掘同一條隧道,因為地質(zhì)條件不同,甲、乙的挖掘速度不同,已知甲、乙同時挖掘天,可以挖米,若甲挖天,乙挖天可以挖掘米.

1)請問甲、乙挖掘機每天可以挖掘多少米?

2)若乙挖掘機比甲挖掘每小時多挖掘米,甲、乙每天挖掘的時間相同,求甲每小時挖掘多少米?

3)若隧道的總長為米,甲、乙挖掘機工作天后,因為甲挖掘機進行設(shè)備更新,乙挖掘機設(shè)備老化,甲比原來每天多挖米,同時乙比原來少挖.最終,甲、乙兩臺挖掘機在相同時間里各完成隧道總長的一半,請用含的代數(shù)式表示

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在8×8的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上).

1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1;(要求:AA1,BB1CC1相對應(yīng))

2 三角形;

3)若有一格點P到點AB的距離相等(PA=PB),則網(wǎng)格中滿足條件的點P共有 個;

(4)在直線上找一點Q,使QB+QC的值最小。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點DAC延長線上一點,連接BD,過A,垂足為M,交BC于點N

如圖1,若,,求AM的長;

如圖2,點ECA的延長線上,且,連接EN并延長交BD于點F,求證:

的條件下,當時,請求出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.猜測DEBD、CE三條線段之間的數(shù)量關(guān)系(直接寫出結(jié)果即可)

(2)如圖2,將(1)中的條件改為:在△ABC中,AB=ACD、A、E三點都在直線m上,并且有∠BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請問第(1)題中DE、BDCE之間的關(guān)系是否仍然成立?如成立,請你給出證明;若不成立,請說明理由.

(3)拓展與應(yīng)用:如圖3,DED、AE三點所在直線m上的兩動點(D、AE三點互不重合),點F為∠BAC平分線上的一點,且△ABF△ACF均為等邊三角形,連接BDCE,若∠BDA=AEC=BAC,試判斷線段DF、EF的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在圖一中,將等邊BC邊中點D順時針旋轉(zhuǎn),直線AG與直線CF交于點求證.小明同學的思路是這樣的:通過證明得到,從而得到,繼續(xù)推理就可以使問題得到解決.

請根據(jù)小明的思路,求證:;

愛動腦筋的小明把問題做了進一步思考,他想:如果把題目的“等邊”改成“等腰直角,其中”,如圖二,中的結(jié)論還成立嗎?如果成立,求此時線段BM的最大值.

小明繼續(xù)大膽設(shè)問:如圖三,在中,,,將這樣的按照題目中的方式旋轉(zhuǎn),請直接寫出AGCF的位置關(guān)系以及線段BM的變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在課外活動時間,甲、乙、丙做“互相踢毽子”游戲,毽子從一人傳給另一人就記為一次踢毽.

若從甲開始,經(jīng)過三次踢毽后,毽子踢到乙處的概率是多少?請說明理由;

若經(jīng)過三次踢毽后,毽子踢到乙處的可能性最小,則應(yīng)從______開始踢.

查看答案和解析>>

同步練習冊答案