【題目】綜合題
(1)如圖1,若CO⊥AB,垂足為O,OE、OF分別平分∠AOC與∠BOC.求∠EOF的度數(shù);

(2)如圖2,若∠AOC=∠BOD=80°,OE、OF分別平分∠AOD與∠BOC.求∠EOF的度數(shù);

(3)若∠AOC=∠BOD=α,將∠BOD繞點(diǎn)O旋轉(zhuǎn),使得射線OC與射線OD的夾角為β,OE、OF分別平分∠AOD與∠BOC.若α+β≤180°,α>β,則∠EOC= . (用含α與β的代數(shù)式表示)

【答案】
(1)解:∵CO⊥AB,

∴∠AOC=∠BOC=90°,

∵OE平分∠AOC,

∴∠EOC= ∠AOC= ×90°=45°,

∵OF平分∠BOC,

∴∠COF= ∠BOC= ×90°=45°,

∠EOF=∠EOC+∠COF=45°+45°=90°;


(2)解:∵OE平分∠AOD,

∴∠EOD= ∠AOD= ×(80+β)=40+ β,

∵OF平分∠BOC,

∴∠COF= ∠BOC= ×(80+β)=40+ β,

∠COE=∠EOD﹣∠COD=40+ β﹣β=40﹣ β;

∠EOF=∠COE+∠COF=40﹣ β+40+ β=80°;


(3)
【解析】(3)如圖2,∵∠AOC=∠BOD=α,∠COD=β,

∴∠AOD=α+β,

∵OE平分∠AOD,

∴∠DOE= (α+β),

∴∠COE=∠DOE﹣∠COD= ,

如圖3,∵∠AOC=∠BOD=α,∠COD=β,

∴∠AOD=α+β,

∵OE平分∠AOD,

∴∠DOE= (α﹣β),

∴∠COE=∠DOE+∠COD=

綜上所述: ,

所以答案是:

【考點(diǎn)精析】利用角的平分線和角的運(yùn)算對(duì)題目進(jìn)行判斷即可得到答案,需要熟知從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線;角之間可以進(jìn)行加減運(yùn)算;一個(gè)角可以用其他角的和或差來表示.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(jiǎn):3(﹣ab+2a)﹣(3a﹣b)+3ab.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小彬一家人在2013年8月到北京旅游了4天,這4天的日期數(shù)(如8月1日的日期數(shù)為1)之和是38,則他們一家在北京旅游最后一天的日期數(shù)是(
A.8號(hào)
B.9號(hào)
C.10號(hào)
D.11號(hào)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B分別表示的數(shù)是6、-12、M、N、P為數(shù)軸上三個(gè)動(dòng)點(diǎn),它們同時(shí)都向右運(yùn)動(dòng)。點(diǎn)M從點(diǎn)A出發(fā),速度為每秒2個(gè)單位長度,點(diǎn)N從點(diǎn)B出發(fā),速度為點(diǎn)M的3倍,點(diǎn)P從原點(diǎn)出發(fā),速度為每秒1個(gè)單位長度。

(1)當(dāng)運(yùn)動(dòng)3秒時(shí),點(diǎn)M、N、P分別表示的數(shù)是、;
(2)求運(yùn)動(dòng)多少秒時(shí),點(diǎn)P到點(diǎn)M、N的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,正確的是(
A.|﹣0.1|<0
B. <﹣|﹣ ?|
C. >0.86
D.﹣2=﹣|﹣2|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定存款利息的納稅辦法是:利息稅=利息×20%,銀行一年定期的利率為2.25%,今小磊取出一年到期的本金及利息時(shí),交納了4.5元利息稅,則小磊一年前存入銀行的錢為(
A.1000元
B.900元
C.800元
D.700元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠B=90°,AB∥DF,AB=4cm,BD=10cm,點(diǎn)C是線段BD上一動(dòng)點(diǎn),點(diǎn)E是直線DF上一動(dòng)點(diǎn),且始終保持AC⊥CE.
(1)如圖1試說明:∠ACB=∠CED.
(2)若AC=CE,試求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備開展“陽光體育活動(dòng)”,決定開設(shè)以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將通過調(diào)查獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問題:

(1)這次活動(dòng)一共調(diào)查了 名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角等于 度;

(4)若該學(xué)校有1500人,請(qǐng)你估計(jì)該學(xué)校選擇足球項(xiàng)目的學(xué)生人數(shù)約是 人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AOD=120°,AC=6,則ABO的周長為( 。

A. 18 B. 15 C. 12 D. 9

查看答案和解析>>

同步練習(xí)冊(cè)答案