【題目】如圖,已知OP平分∠AOB,CPOAPDOA于點(diǎn)D,PEOB于點(diǎn)ECP,PD6.如果點(diǎn)MOP的中點(diǎn),則DM的長(zhǎng)是_____

【答案】5

【解析】

由角平分線的性質(zhì)得出∠AOP=BOP,PC=PD=6,∠PDO=PEO=90°,由勾股定理得出,由平行線的性質(zhì)得出∠OPC=AOP,得出∠OPC=BOP,證出,得出OE=CE+CO=8,由勾股定理求出,再由直角三角形斜邊上的中線性質(zhì)即可得出答案.

OP平分AOBPDOA于點(diǎn)D,PEOB于點(diǎn)E

∴∠AOPBOP,PCPD6PDOPEO90°,

,

CPOA

∴∠OPCAOP,

∴∠OPCBOP,

,

,

,

RtOPD中,點(diǎn)MOP的中點(diǎn),

故答案為:5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,已知ABCD,ADABAD=2,AB+CD=4,點(diǎn)EBC的中點(diǎn).

1)求四邊形ABCD的面積;

2)若AEBC,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=-2x與直線ykxb相交于點(diǎn)A(a,2),并且直線ykxb經(jīng)過x軸上點(diǎn)B(2,0)

(1)求直線ykxb的解析式;

(2)求兩條直線與y軸圍成的三角形面積;

(3)直接寫出不等式(k2)xb≥0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,點(diǎn)A、D、B、E在同一直線上,AC=EF,AD=BE,∠A=∠E,

(1)求證:△ABC≌△EDF;

(2)當(dāng)∠CHD=120°,猜想△HDB的形狀,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的周長(zhǎng)為36,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)ECD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:在平面直角坐標(biāo)系中,如果點(diǎn)P的坐標(biāo)為(mn),向量可以用點(diǎn)P的坐標(biāo)表示為:=(m,n).已知=(x1,y1),=(x2,y2),如果x1x2+y1y20,那么互相垂直,在下列四組向量中,互相垂直的是( 。

A.=(3,20190),=(﹣31,1

B.=(11),=(+1,1

C.=(),=((﹣2,8

D.=(+2,),=(2,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要建一個(gè)如圖所示的面積為300 的長(zhǎng)方形圍欄,圍欄總長(zhǎng)50m,一邊靠墻(墻長(zhǎng)25m),

(1)求圍欄的長(zhǎng)和寬;

(2)能否圍成面積為400 的長(zhǎng)方形圍欄?如果能,求出該長(zhǎng)方形的長(zhǎng)和寬,如果不能請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案