精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E
(1)求證:DE=AB;
(2)以A為圓心,AB長為半徑作圓弧交AF于點G,若BF=FC=1,求扇形ABG的面積.(結果保留π)

【答案】
(1)

證明:∵四邊形ABCD是矩形,

∴∠B=90°,AD=BC,AD∥BC,

∴∠DAE=∠AFB,

∵DE⊥AF,

∴∠AED=90°=∠B,

在△ABF和△DEA中

,

∴△ABF≌△DEA(AAS),

∴DE=AB;


(2)

解:∵BC=AD,AD=AF,

∴BC=AF,

∵BF=1,∠ABF=90°,

∴由勾股定理得:AB= = ,

∴∠BAF=30°,

∵△ABF≌△DEA,

∴∠GDE=∠BAF=30°,DE=AB=DG= ,

∴扇形ABG的面積= = π.


【解析】(1)根據矩形的性質得出∠B=90°,AD=BC,AD∥BC,求出∠DAE=∠AFB,∠AED=90°=∠B,根據AAS推出△ABF≌△DEA即可;
   。2)根據勾股定理求出AB,解直角三角形求出∠BAF,根據全等三角形的性質得出DE=DG=AB= ,∠GDE=∠BAF=30°,根據扇形的面積公式求出即可.本題考查了弧長公式,全等三角形的性質和判定,解直角三角形,勾股定理,矩形的性質的應用,能綜合運用性質進行推理和計算是解此題的關鍵.
【考點精析】通過靈活運用矩形的性質和扇形面積計算公式,掌握矩形的四個角都是直角,矩形的對角線相等;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】“古詩送郎從軍:送郎一路雨飛池,十里江亭折柳枝;離人遠影疾行去,歸來夢醒度相思.”中,如果用縱軸y表示從軍者與送別者行進中離原地的距離,用橫軸x表示送別進行的時間,從軍者的圖象為O→A→B→C,送別者的圖象為O→A→B→D,那么下面的圖象與上述詩的含義大致吻合的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,延長△ABC的各邊,使得BF=AC,AE=CD=AB,連結DE,EF,FD,得到△DEF為等邊三角形.

求證:(1)△AEF≌△CDE;

(2)△ABC為等邊三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某高校共有5個大餐廳和2個小餐廳。經過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學生就餐。

(1)1個大餐廳和1個小餐廳分別可供多少名學生就餐?

(2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數y= (x>0)的圖象經過AO的中點C,且與AB相交于點D,OB=4,AD=3,

(1)求反比例函數y= 的解析式;
(2)求cos∠OAB的值;
(3)求經過C、D兩點的一次函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,﹣3)
(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當四邊形ABPC的面積最大時,求點P的坐標和四邊形ABPC的最大面積.
(3)直線l經過A、C兩點,點Q在拋物線位于y軸左側的部分上運動,直線m經過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】請根據圖中提供的信息,回答下列問題

(1)一個暖瓶與一個水杯分別是多少元?

(2)甲、乙兩家商場同時出售同樣的暖瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定: 這兩種商品都打九折;乙商場規(guī)定:買一個暖瓶贈送一個水杯。若某單位想要買4個暖瓶和15個水杯,請問選擇哪家商場購買更合算,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】是下列方程中哪一個方程的解(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一次綜合實踐活動中,小明要測某地一座古塔AE的高度.如圖,已知塔基頂端B(和A、E共線)與地面C處固定的繩索的長BC為80m.她先測得∠BCA=35°,然后從C點沿AC方向走30m到達D點,又測得塔頂E的仰角為50°,求塔高AE.(人的高度忽略不計,結果用含非特殊角的三角函數表示)

查看答案和解析>>

同步練習冊答案