24、如圖,已知,D、E分別是△ABC的邊AB、AC上的點(diǎn),DE交BC的延長(zhǎng)線(xiàn)于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度數(shù).
分析:根據(jù)對(duì)頂角相等可知∠CEF=∠AED;又∠ACB是△CEF的外角,所以根據(jù)外角的性質(zhì)求出∠F; 根據(jù)三角形內(nèi)角和定理可求∠BDF的度數(shù).
解答:解:∵∠CEF=∠AED=48°,∠ACB=∠CEF+∠F,
∴∠F=∠ACB-∠CEF=74°-48°=26°;          
∵∠BDF+∠B+∠F=180°,
∴∠BDF=180°-∠B-∠F
=180°-67°-26°
=87°.(4分)
點(diǎn)評(píng):此題考查三角形內(nèi)角和定理和三角形的外角的性質(zhì),難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知:D、E分別是△ABC的AB、AC邊上的點(diǎn),且DE不與BC平行,能夠判定△ABC∽△AED的條件是(  )
A、
AB
AC
=
AD
AE
B、
AB
AE
=
BC
ED
C、
AC
AD
=
BC
ED
D、
AB
AE
=
AC
AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,已知:D,E分別是△ABC的AB,AC邊上的點(diǎn),且△ABC∽△ADE,AD:DB=1:3,DE=2,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:D、E分別是△ABC的AB、AC邊上一點(diǎn),DE∥BC,若AD:AB=1:2,則S△ADE:S四邊形BDEC=
1:3
1:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:A、B分別是x軸上位于原點(diǎn)左、右兩側(cè)的點(diǎn),點(diǎn)P(2,p)在第一象限,直線(xiàn)PA交y軸于點(diǎn)C(0,2),直線(xiàn)PB交y軸于點(diǎn)D,此時(shí),S△AOP=6.
(1)求P的值;
(2)若S△BOP=S△DOP,求直線(xiàn)BD的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案