【題目】為支持四川抗震救災(zāi),重慶市A、B、C三地現(xiàn)在分別有賑災(zāi)物資100噸、100噸、80噸,需要全部運(yùn)往四川重災(zāi)地區(qū)的D、E兩縣.根據(jù)災(zāi)區(qū)的情況,這批賑災(zāi)物資運(yùn)往D縣的數(shù)量比運(yùn)往E縣的數(shù)量的2倍少20噸.
(1)求這批賑災(zāi)物資運(yùn)往D、E兩縣的數(shù)量各是多少?
(2)若要求C地運(yùn)往D縣的賑災(zāi)物資為60噸,A地運(yùn)往D的賑災(zāi)物資為x噸(x為整數(shù)),B地運(yùn)往D縣的賑災(zāi)物資數(shù)量小于A地運(yùn)往D縣的賑災(zāi)物資數(shù)量的2倍.其余的賑災(zāi)物資全部運(yùn)往E縣,且B地運(yùn)往E縣的賑災(zāi)物資數(shù)量不超過25噸.則A、B兩地的賑災(zāi)物資運(yùn)往D、E兩縣的方案有幾種?請你寫出具體的運(yùn)送方案;
(3)已知A、B、C三地的賑災(zāi)物資運(yùn)往D、E兩縣的費(fèi)用如下表:

A地

B地

C地

運(yùn)往D縣的費(fèi)用(元/噸)

220

200

200

運(yùn)往E縣的費(fèi)用(元/噸)

250

220

210

為及時(shí)將這批賑災(zāi)物資運(yùn)往D、E兩縣,某公司主動(dòng)承擔(dān)運(yùn)送這批賑災(zāi)物資的總費(fèi)用,在(2)問的要求下,該公司承擔(dān)運(yùn)送這批賑災(zāi)物資的總費(fèi)用最多是多少?

【答案】
(1)解:設(shè)這批賑災(zāi)物資運(yùn)往D縣的數(shù)量為a噸,運(yùn)往E縣的數(shù)量為b噸.(1分)

由題意,得

解得 (3分)

答:這批賑災(zāi)物資運(yùn)往D縣的數(shù)量為180噸,運(yùn)往E縣的數(shù)量為100噸


(2)解:由題意,得

解得 即40<x≤45.

∵x為整數(shù),∴x的取值為41,42,43,44,45.

則這批賑災(zāi)物資的運(yùn)送方案有五種.

具體的運(yùn)送方案是:

方案一:A地的賑災(zāi)物資運(yùn)往D縣41噸,運(yùn)往E縣59噸;B地的賑災(zāi)物資運(yùn)往D縣79噸,運(yùn)往E縣21噸.

方案二:A地的賑災(zāi)物資運(yùn)往D縣42噸,運(yùn)往E縣58噸;B地的賑災(zāi)物資運(yùn)往D縣78噸,運(yùn)往E縣22噸.

方案三:A地的賑災(zāi)物資運(yùn)往D縣43噸,運(yùn)往E縣57噸;B地的賑災(zāi)物資運(yùn)往D縣77噸,運(yùn)往E縣23噸.

方案四:A地的賑災(zāi)物資運(yùn)往D縣44噸,運(yùn)往E縣56噸;B地的賑災(zāi)物資運(yùn)往D縣76噸,運(yùn)往E縣24噸.

方案五:A地的賑災(zāi)物資運(yùn)往D縣45噸,運(yùn)往E縣55噸;B地的賑災(zāi)物資運(yùn)往D縣75噸,運(yùn)往E縣25噸


(3)解:設(shè)運(yùn)送這批賑災(zāi)物資的總費(fèi)用為w元.

由題意,得w=220x+250(100﹣x)+200(120﹣x)+220(x﹣20)+200×60+210×20=﹣10x+60800.

因?yàn)閣隨x的增大而減小,且40<x≤45,x為整數(shù).

所以,當(dāng)x=41時(shí),w有最大值.則該公司承擔(dān)運(yùn)送這批賑災(zāi)物資的總費(fèi)用最多為:w=60390(元)


【解析】(1)設(shè)這批賑災(zāi)物資運(yùn)往D縣的數(shù)量為a噸,運(yùn)往E縣的數(shù)量為b噸,得到一個(gè)二元一次方程組,求解即可.(2)根據(jù)題意得到一元二次不等式,再找符合條件的整數(shù)值即可.(3)求出總費(fèi)用的函數(shù)表達(dá)式,利用函數(shù)性質(zhì)可求出最多的總費(fèi)用.
【考點(diǎn)精析】關(guān)于本題考查的一元一次不等式組的應(yīng)用,需要了解1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】浠水縣商場某柜臺銷售每臺進(jìn)價(jià)分別為160元、120元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3臺

4臺

1200元

第二周

5臺

6臺

1900元

(進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號的電風(fēng)扇的銷售單價(jià);
(2)若商場準(zhǔn)備用不多于7500元的金額再采購這兩種型號的電風(fēng)扇共50臺,求A種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,商場銷售完這50臺電風(fēng)扇能否實(shí)現(xiàn)利潤超過1850元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,多邊形OABCDE的頂點(diǎn)坐標(biāo)分別是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直線l經(jīng)過點(diǎn)M(2,3),且將多邊形OABCDE分割成面積相等的兩部分,則直線l的函數(shù)表達(dá)式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直線L上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是、、、,則=( )

A. 5 B. 4 C. 6 D. 、10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=CBABC=90°,FAB延長線上一點(diǎn),點(diǎn)EBC上,且AE=CF

1)求證:ABE≌△CBF;

2)若CAE=30°,求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角三角形,兩條直角邊分別為6cm,8cm,斜邊長為10cm,若分別以一邊旋轉(zhuǎn)一周(結(jié)果用π表示;你可能用到其中的一個(gè)公式,V圓柱=πr2hV球體=,V圓錐=h

1)如果繞著它的斜邊所在的直線旋轉(zhuǎn)一周形成的幾何體是?

2)如果繞著它的直角邊6所在的直線旋轉(zhuǎn)一周形成的幾何體的體積是多少?

3)如果繞著它的斜邊10所在的直線旋轉(zhuǎn)一周形成的幾何體的體積與繞著直角邊8所在的直線旋轉(zhuǎn)一周形成的幾何體的體積哪個(gè)大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程有兩個(gè)正整數(shù)根是正整數(shù)的三邊a、b、c滿足,,

求:的值;

的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖正方形ABCD的邊長為6,點(diǎn)E、F分別在AB,AD,CE=3,且∠ECF=45°,CF長為(

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于下列結(jié)論: ①二次函數(shù)y=6x2 , 當(dāng)x>0時(shí),y隨x的增大而增大.
②關(guān)于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a、m、b均為常數(shù),a≠0),則方程a(x+m+2)2+b=0的解是x1=﹣4,x2=﹣1.
③設(shè)二次函數(shù)y=x2+bx+c,當(dāng)x≤1時(shí),總有y≥0,當(dāng)1≤x≤3時(shí),總有y≤0,那么c的取值范圍是c≥3.
其中,正確結(jié)論的個(gè)數(shù)是(
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

同步練習(xí)冊答案