【題目】菱形ABCD中,∠B=60°,延長BC至E,使得CE=BC,點F在DE上,DF=6,AG平分∠BAF,與線段BC相交于點G,若CG=2,則線段AB的長度為 .
【答案】10
【解析】解:將△ADF繞點A順時針旋轉120°到△ABK,設AB=a.作FH⊥AD于H.
∵四邊形ABCD是菱形,
∴AB=BC=CD=AD=CE=a,AB∥CD,AD∥BC,
∵∠ABC=60°,
∴∠DCE=∠ABC=60°,
∴△DCE是等邊三角形,
∴∠E=∠EDH=60°,
∵DF=6,
∴DH= DF=3,FH=3 ,
∵∠AGK=∠DAG=∠DAF+∠FAC,
∵∠DAF=∠KAB,∠FAC=∠BAC,
∴∠KAG=∠KGA,
∴KA=KG=AF=a+4,
在RT△AHF中,∵AH2+FH2=AF2 ,
∴(a+3)2+(3 )2=(a+4)2 ,
∴a=10.
所以答案是10.
【考點精析】根據題目的已知條件,利用菱形的性質的相關知識可以得到問題的答案,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數學 來源: 題型:
【題目】如圖,將□ABCD的邊AB延長至點E,使AB=BE,連接BD,DE,EC,DE交BC于點O.
(1)求證:△ABD≌△BEC;
(2)若∠BOD=2∠A,求證:四邊形BECD是矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC,BD相交于點O,O是AC的中點,AD//BC,AC=8,BD=6.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求□ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在面積為12的平行四邊形ABCD中,過點A作直線BC的垂線交直線BC于點E,過點A作直線CD的垂線交直線CD于點F,若AB=4,BC=6,則CE+CF的值為( )
A. B. C. 或 D. 或
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點C順時針旋轉90°,得到△A′B′C,連接AA′,若∠1=20°,則∠B的度數是( )
A.70°
B.65°
C.60°
D.55°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠B=30°,AB=AC,O是兩條對角線的交點,過點O作AC的垂線分別交邊AD,BC于點E,F;點M是邊AB的一個三等分點。則△AOE與△BMF的面積比為_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一副直角三角尺疊放如圖1所示,現將45°的三角尺ADE固定不動,將含30°的三角尺ABC繞頂點A順時針轉動,使BC邊與三角形ADE的一邊互相平行.則∠BAD(0°<∠BAD<180°)所有可能符合條件的度數為________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD繞點A逆時針旋轉30°,得到平行四邊形AB′C′D′(點B′與點B是對應點,點C′與點C是對應點,點D′與點D是對應點),點B′恰好落在BC邊上,則∠C的度數等于( )
A.100°
B.105°
C.115°
D.120°
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com