【題目】“構(gòu)造圖形解題”,它的應(yīng)用十分廣泛,特別是有些技巧性很強的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無措,難以下手,這時,如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過構(gòu)造適合的幾何圖形,將會得到事半功倍的效果,下面介紹兩則實例:
實例一:1876年,美國總統(tǒng)伽非爾德利用實例一圖證明了勾股定理:由S四邊形ABCD=S△ABC+S△ADE+S△ABE得:(a+b)2=2×ab+c2,化簡得:a2+b2=c2.
實例二:歐幾里得的《幾何原本》記載,關(guān)于x的方程x2+ax=b2的圖解法是:畫Rt△ABC,使∠ACB=90°,BC=,AC=|b|,再在斜邊AB上截取BD=,則AD的長就是該方程的一個正根(如實例二圖).
請根據(jù)以上閱讀材料回答下面的問題:
(1)如圖1,請利用圖形中面積的等量關(guān)系,寫出甲圖要證明的數(shù)學(xué)公式是______,乙圖要證明的數(shù)學(xué)公式是______,體現(xiàn)的數(shù)學(xué)思想是______;
(2)如圖2,若2和-8是關(guān)于x的方程x2+ax=b2的兩個根,按照實例二的方式構(gòu)造Rt△ABC,連接CD,求CD的長;
(3)若x,y,z都為正數(shù),且x2+y2=z2,請用構(gòu)造圖形的方法求的最大值.
【答案】(1)完全平方公式,平方差公式,數(shù)形結(jié)合的思想(2)(3)
【解析】
(1)利用面積法解決問題即可.
(2)如圖2中,作CH⊥AB于H.由題意,AD=2,BC=BD=3,AC=4,利用面積法求出CH,BH,DH即可解決問題;
(3)如圖3中,用4個全等的直角三角形(直角邊分別為x,y,斜邊為z),拼如圖正方形.當x+y是定值時,z最小的時候,定值最小,易知當小正方形的頂點是大正方形的中點時,z的值最小,此時x=y,z=x,由此即可解決問題.
(1)如圖1中,圖甲大正方形的面積=(a+b)2=a2+2ab+b2,
圖乙中大正方形的面積=a2=(a-b)2+b2+2b(a-b),
即a2-b2=(a-b)(a-b+2b)=(a+b)(a-b).
甲圖要證明的數(shù)學(xué)公式是完全平方公式,乙圖要證明的數(shù)學(xué)公式是平方差公式,體現(xiàn)的數(shù)學(xué)思想是數(shù)形結(jié)合的思想.
故答案為:完全平方公式,平方差公式,數(shù)形結(jié)合的思想.
(2)如圖2中,作CH⊥AB于H.
由題意,AD=2,BC=BD=3,AC=4,
∵ACBC=ABCH,
∴CH= ,
∴BH=,
∴DH=BD-BH=,
∴CD=.
(3)如圖3中,用4個全等的直角三角形(直角邊分別為x,y,斜邊為z),拼如圖正方形.
當x+y是定值時,z最小的時候,定值最小,
易知當小正方形的頂點是大正方形的中點時,z的值最小,此時x=y,z=x,
∴最大值=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果中的牛油果和桔子的維生素含量很高,因此深受人們喜愛,“農(nóng)夫果園”水果商家11月份購進了第一批牛油果和桔子共300千克,已知牛油果進價每千克15元,售價每千克30元,桔子進價每千克5元,售價每千克10元.
(1)若這批牛油果和桔子全部銷售完獲利不低于3500元,則牛油果至少購進多少千克?
(2)第一批牛油果和桔子很快售完,于是商家決定購進第二批牛油果和桔子,牛油果和桔子的進價不變,牛油果售價比第一批上漲a%(其中a為正整數(shù)),桔子售價比第一批上漲2a%;銷量與(1)中獲得最低利潤時的銷量相比,牛油果的銷量下降a%,桔子的銷量保持不變,結(jié)果第二批中已經(jīng)賣掉的牛油果和桔子的銷售總額比(1)中第一批牛油果和桔子銷售完后對應(yīng)最低銷售總額增加了2%,求正整數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知RtΔABC,∠C=90°,D為BC的中點.以AC為直徑的圓O交AB于點E.
(1)求證:DE是圓O的切線.
(2)若AE:EB=1:2,BC=6,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,BC邊在x軸上,BC的中點與原點O重合,過定點M(-2,0)與動點P(0,t)的直線MP記作l.
(1)若l的解析式為y=2x+4,判斷此時點A是否在直線l上,并說明理由;
(2)當直線l與AD邊有公共點時,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由菜鳥網(wǎng)絡(luò)打造的一個倉庫有相同數(shù)量的工人和機器人,均為x名(其中x>5),平時每天都只工作8小時,每名機器人每小時加工包裹(分、揀、包裝一體化)的數(shù)量是每名工人每小時加工包裹數(shù)量的2倍.隨著“春節(jié)”臨近,人工短缺,寄年貨的包裹增多,公司決定再增加2名機器人,且將機器人每天工作時間延長至12小時,并對每名機器人進行升級改造,讓現(xiàn)在每名機器人每小時加工包裹的數(shù)量在原有基礎(chǔ)上增加x個,結(jié)果現(xiàn)在所有機器人每天加工包裹的數(shù)量是所有工人平時每天加工包裹數(shù)量的6倍,則該倉庫平時一天加工______個包裹.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側(cè)),已知A點的縱坐標是2;
(1)求反比例函數(shù)的表達式;
(2)根據(jù)圖象直接寫出﹣x>的解集;
(3)將直線l1:y=- x沿y向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,P,B,C是圓上的四個點,∠APC=∠CPB=60°,AP,CB的延長線相交于點D.
(1)求證:△ABC是等邊三角形;
(2)若∠PAC=90°,AB=,求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟社會的發(fā)展,人民對于美好生活的追求越來越高.某社區(qū)為了了解家庭對于文化教育的消費情況,隨機抽取部分家庭,對每戶家庭的文化教育年消費金額進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖表.
請你根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
(1)本次被調(diào)查的家庭有 戶,表中m= ;
(2)請說明本次調(diào)查數(shù)據(jù)的中位數(shù)落在哪一組?
(3)在扇形統(tǒng)計圖中,D組所在扇形的圓心角為多少度?
(4)這個社區(qū)有2500戶家庭,請你估計年文化教育消費在10000元以上的家庭有多少戶?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com