【題目】如圖,直線y=﹣x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸的另一個交點(diǎn)為C.

(1)求拋物線的解析式;

(2)點(diǎn)P是第一象限拋物線上的點(diǎn),連接OP交直線AB于點(diǎn)Q.設(shè)點(diǎn)P的橫坐標(biāo)為m,PQ與OQ的比值為y,求y與m的關(guān)系式,并求出PQ與OQ的比值的最大值;

(3)點(diǎn)D是拋物線對稱軸上的一動點(diǎn),連接OD、CD,設(shè)ODC外接圓的圓心為M,當(dāng)sinODC的值最大時,求點(diǎn)M的坐標(biāo).

【答案】(1)拋物線解析式為y=﹣x2+x+3;(2)y=﹣m2+m,PQ與OQ的比值的最大值為;(3)點(diǎn)M的坐標(biāo)為(﹣1,)或(﹣1,﹣).

【解析】

1)根據(jù)直線解析式求得點(diǎn)A、B的坐標(biāo),將兩點(diǎn)的坐標(biāo)代入拋物線解析式求解可得;

(2)過點(diǎn)Py軸的平行線交AB于點(diǎn)E,據(jù)此知PEQ∽△OBQ,根據(jù)對應(yīng)邊成比例得y=PE,由P(m,﹣m2+m+3)、E(m,﹣m+3)得PE=﹣m2+m,結(jié)合y=PE可得函數(shù)解析式,利用二次函數(shù)性質(zhì)得其最大值;

(3)設(shè)CO的垂直平分線與CO交于點(diǎn)N,知點(diǎn)MCO的垂直平分線上,連接OM、CM、DM,根據(jù)∠ODC=CMO=OMN、MC=MO=MDsinODC=sinOMN=,當(dāng)MD取最小值時,sinODC最大,據(jù)此進(jìn)一步求解可得.

(1)在y=﹣x+3中,令y=0x=4,令x=0y=3,

∴點(diǎn)A(4,0)、B(0,3),

A(4,0)、B(0,3)代入y=﹣x2+bx+c,得:

,

解得:,

∴拋物線解析式為y=﹣x2+x+3;

(2)如圖1,過點(diǎn)Py軸的平行線交AB于點(diǎn)E,

PEQ∽△OBQ,

,

=y、OB=3,

y=PE,

P(m,﹣m2+m+3)、E(m,﹣m+3),

PE=(﹣m2+m+3)﹣(﹣m+3)=﹣m2+m,

y=(﹣m2+m)=﹣m2+m=﹣(m﹣2)2+,

0<m<3,

∴當(dāng)m=2時,y最大值=

PQOQ的比值的最大值為;

(3)如圖,由拋物線y=﹣x2+x+3易求C(﹣2,0),對稱軸為直線x=1,

∵△ODC的外心為點(diǎn)M,

∴點(diǎn)MCO的垂直平分線上,

設(shè)CO的垂直平分線與CO交于點(diǎn)N,連接OM、CM、DM,

則∠ODC=CMO=OMN、MC=MO=MD,

sinODC=sinOMN=

MO=MD,

∴當(dāng)MD取最小值時,sinODC最大,

此時⊙M與直線x=1相切,MD=2,

MN==

∴點(diǎn)M(﹣1,﹣),

根據(jù)對稱性,另一點(diǎn)(﹣1,)也符合題意;

綜上所述,點(diǎn)M的坐標(biāo)為(﹣1,)或(﹣1,﹣).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,給出下列結(jié)論:①;②;③;④,其中正確的是(

A. ①③④;B. ②③④;C. ①②④D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用直尺和圓規(guī)畫一個角等于已知角,是運(yùn)用了全等三角形的對應(yīng)角相等這一性質(zhì),其全等的依據(jù)是( )

ASAS BASA CAAS DSSS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家之一,為了增強(qiáng)居民的節(jié)水意識,某自來水公司對居民用水采取以戶為單位分段計費(fèi)辦法收費(fèi);即每月用水10噸以內(nèi)(包括10噸)的用戶,每噸水收費(fèi)a元,每月用水超過10噸的部分,按每噸b元(ba)收費(fèi),設(shè)一戶居民月用水x(噸),應(yīng)收水費(fèi)y(元),yx之間的函數(shù)關(guān)系如圖所示.

1)分段寫出yx的函數(shù)關(guān)系式.

2)某戶居民上月用水8噸,應(yīng)收水費(fèi)多少元?

3)已知居民甲上月比居民乙多用水4噸,兩家一共交水費(fèi)46元,求他們上月分別用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結(jié)論正確的是( 。

A. x1+x2=1 B. x1x2=﹣1 C. |x1|<|x2| D. x12+x1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B的坐標(biāo)為(4,2),直線y=﹣x+與邊AB,BC分別相交于點(diǎn)M,N,函數(shù)y=(x>0)的圖象過點(diǎn)M.

(1)試說明點(diǎn)N也在函數(shù)y=(x>0)的圖象上;

(2)將直線MN沿y軸的負(fù)方向平移得到直線M′N′,當(dāng)直線M′N′與函數(shù)y(x>0)的圖象僅有一個交點(diǎn)時,求直線M'N′的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解家長對學(xué)生在校帶手機(jī)現(xiàn)象的看法某校九年級興趣小組隨機(jī)調(diào)查了該校學(xué)生家長若干名,并對調(diào)查結(jié)果進(jìn)行整理,繪制如下不完整的統(tǒng)計圖

請根據(jù)以上信息,解答下列問題

(1)這次接受調(diào)查的家長總?cè)藬?shù)為________人;

(2)在扇形統(tǒng)計圖中,很贊同所對應(yīng)的扇形圓心角的度數(shù);

(3)若在這次接受調(diào)查的家長中,隨機(jī)抽出一名家長,恰好抽到無所謂的家長概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1正方形ABCD和正方形AEFG,連接DG,BE

(1)發(fā)現(xiàn)

當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖2線段DGBE之間的數(shù)量關(guān)系是____________。直線DG與直線BE之間的位置關(guān)系是____________。

(2)探究

如圖3,若四邊形ABCD與四邊形AEFG都為矩形AD=2AB,AG=2AE證明直線DG⊥BE

(3)應(yīng)用

(2)情況下,連結(jié)GE(點(diǎn)EAB上方),GEAB,AB=AE=1,則線段DG是多少?(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù) y的圖象與一次函數(shù)ymxb的圖象交于兩點(diǎn)A1,3,Bn,1).

1)求反比例函數(shù)與一次函數(shù)的函數(shù)關(guān)系式;

2)根據(jù)圖象,直接回答:當(dāng)x取何值時,一次函數(shù)的值大于反比例函數(shù)的值;

3)連接AO、BO,求ABO的面積;

4)在y軸上存在點(diǎn)P,使AOP為等腰三角形,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案