解答:解:(1)如圖,過(guò)點(diǎn)B作BD⊥OA于點(diǎn)D.在Rt△ABD中,
∵|AB|=
3,sin∠OAB=
,
∴|BD|=|AB|•sin∠OAB=
3×
=3.
又由勾股定理,得
|AD|==
=6∴|OD|=|OA|-|AD|=10-6=4.
∵點(diǎn)B在第一象限,
∴點(diǎn)B的坐標(biāo)為(4,3). …3分
設(shè)經(jīng)過(guò)O(0,0)、C(4,-3)、A(10,0)三點(diǎn)的拋物線的函數(shù)表達(dá)式為y=ax
2+bx(a≠0).
由
?∴經(jīng)過(guò)O、C、A三點(diǎn)的拋物線的函數(shù)表達(dá)式為
y=x2-x.…2分
(2)假設(shè)在(1)中的拋物線上存在點(diǎn)P,使以P、O、C、A為頂點(diǎn)的四邊形為梯形
①∵點(diǎn)C(4,-3)不是拋物線
y=x2-x的頂點(diǎn),
∴過(guò)點(diǎn)C作直線OA的平行線與拋物線交于點(diǎn)P
1.則直線CP
1的函數(shù)表達(dá)式為y=-3.
對(duì)于
y=x2-x,
令y=-3則得x=4或x=6.
∴
而點(diǎn)C(4,-3),
∴P
1(6,-3).
在四邊形P1AOC中,CP
1∥OA,顯然|CP
1|≠|(zhì)OA|.
∴點(diǎn)P
1(6,-3)是符合要求的點(diǎn). …1分
②若AP
2∥CO.
設(shè)直線CO的函數(shù)表達(dá)式為y=k
1x.
將點(diǎn)C(4,-3)代入,
得4k
1=-3
∴
k1=-∴直線CO的函數(shù)表達(dá)式為
y=-x.
于是可設(shè)直線AP
2的函數(shù)表達(dá)式為
y=-x+b1.
將點(diǎn)A(10,0)代入,得
-x+.
∴直線AP
2的函數(shù)表達(dá)式為
y=-x+.
由
?x2-4x-60=0,
即(x-10)(x+6)=0.
∴
而點(diǎn)A(10,0),
∴P
2(-6,12).
過(guò)點(diǎn)P
2作P
2E⊥x軸于點(diǎn)E,則|P
2E|=12.
在Rt△AP
2E中,由勾股定理,得
|AP2|===20.
而|CO|=|OB|=5.
∴在四邊形P
2OCA中,AP
2∥CO,但|AP
2|≠|(zhì)CO|.
∴點(diǎn)P
2(-6,12)是符合要求的點(diǎn). …1分
③若OP
3∥CA,設(shè)直線CA的函數(shù)表達(dá)式為y=k
2x+b
2將點(diǎn)A(10,0)、C(4,-3)代入,
得
∴直線CA的函數(shù)表達(dá)式為
y=x-5.
∴直線OP
3的函數(shù)表達(dá)式為
y=x,由
?x2-14x=0,
即x(x-14)=0.
∴
而點(diǎn)O(0,0),
∴P
3(14,7).過(guò)點(diǎn)P
3作P
3E⊥x軸于點(diǎn)E,則|P
3E|=7.
在Rt△OP
3E中,由勾股定理,得
|OP3|===7.而|CA|=|AB|=
3.
∴在四邊形P
3OCA中,OP
3∥CA,但|OP
3|≠|(zhì)CA|.
∴點(diǎn)P
3(14,7)是符合要求的點(diǎn). …1分
綜上可知,在(1)中的拋物線上存在點(diǎn)P
1(6,-3)、P
2(-6,12)、P
3(14,7),
使以P、O、C、A為頂點(diǎn)的四邊形為梯形. …1分
(3)由題知,拋物線的開口可能向上,也可能向下.
①當(dāng)拋物線開口向上時(shí),則此拋物線與y軸的負(fù)半軸交于點(diǎn)N.
可設(shè)拋物線的函數(shù)表達(dá)式為y=a(x+2k)(x-5k)(a>0).
即y=ax
2-3akx-10ak
2=
a(x-k)2-ak2.
如圖,過(guò)點(diǎn)M作MG⊥x軸于點(diǎn)G.
∵Q(-2k,0)、R(5k,0)、G(
(k,0)、N(0,-10ak
2)、M
(k,-ak2),
∴|QO|=2k,|QR|=7k,|OG|=
k,|QG|=
k,|ON|=10ak2,|MG|=ak2.
∴
S△QNR=•|QR|•|ON|
=
×7k×10ak
2=35ak
3.
S
△QMN=
•|QO|•|ON|+
(|ON|+|GM|)•|OG|-
•|QG|•|GM|=
×2k×10ak2+×(10ak2+ak2)×k-×k×ak2=
(20+15+3×
-7×
)ak
3,
∴
S△QNM:S△QNR=(ak3):(35ak3)=3:20.…2分
②當(dāng)拋物線開口向下時(shí),則此拋物線與y軸的正半軸交于點(diǎn)N,同理,可得S
△QNM:S
△QNR=3:20.…1分
綜上所知,S
△QNM:S
△QNR的值為3:20. …1分