【題目】如圖,的直徑,點,上兩點,且,連接,,過點延長線于點,垂足為

1)求證:的切線;

2)若,求的半徑.

【答案】1)見解析;(2)圓O 的半徑為8

【解析】

1)連結(jié)OC,由根據(jù)圓周角定理得∠FAC=BAC,而∠OAC=OCA,則∠FAC=OCA,可判斷OCAF,由于CDAF,所以OCCD,然后根據(jù)切線的判定定理得到CD是⊙O的切線;

2)連結(jié)BC,由AB為直徑得∠ACB=90°,由得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在RtADC中,利用含30度的直角三角形三邊的關(guān)系得,在RtACB中,利用含30度的直角三角形三邊的關(guān)系得 AB=2BC=8,從而求出⊙O的半徑.

解:(1)證明:連結(jié)OC,如圖

FC=BC

∴∠FAC=∠BAC,

∵OA=OC,∴∠OAC=∠OCA,

∴∠FAC=∠OCA,∴0C // AF,

∵CD⊥AF,∴0C⊥CD,

∴CD是圓O的切線;

2)連結(jié)BC,如圖,

∵AB為直徑,

∴∠ACB90°,,

∴∠BOC= ×180°=60°∴∠BAC=30,

∴∠DAC=30,在RtΔADC中,CD=,

∴AC=2CD=,在RtΔACB,BC=AC==8,

∴AB=2BC=16,∴O 的半徑為8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個等腰三角形的三邊長均滿足方程x2-6x+8=0,則此三角形的周長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明發(fā)現(xiàn)相機快門打開過程中,光圈大小變化如圖1所示,于是他繪制了如圖2所示的圖形.圖2中留個形狀大小都相同的四邊形圍成一個圓的內(nèi)接六邊形和一個小正六邊形,若PQ所在的直線經(jīng)過點M,PB=5cm,小正六邊形的面積為cm2,則該圓的半徑為________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20191217日,我國第一艘國產(chǎn)航母山東艦在海南三亞交付海軍.如圖,山東艦在一次試水測試中,航行至處,觀測指揮塔位于南偏西方向,在沿正南方向以30海里/小時的速度勻速航行2小時后,到達處,再觀測指揮塔位于南偏西方向,若繼續(xù)向南航行.山東艦與指揮塔之間的最近距離為多少海里?(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=﹣(xm2+4m0)的頂點為A,與直線x相交于點B,點A關(guān)于直線x的對稱點為C

1)若拋物線y=﹣(xm2+4m0)經(jīng)過原點,求m的值.

2)點C的坐標為   .用含m的代數(shù)式表示點B到直線AC的距離為   

3)將y=﹣(xm2+4m0,且x)的函數(shù)圖象記為圖象G,圖象G關(guān)于直線x的對稱圖象記為圖象H.圖象G與圖象H組合成的圖象記為圖象M

①當(dāng)圖象Mx軸恰好有三個交點時,求m的值.

②當(dāng)ABC為等腰直角三角形時,直接寫出圖象M所對應(yīng)的函數(shù)值小于0時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O 的半徑長為2,點C為直徑AB的延長線上一點,且BC=2.過點C任作一條直線l.若直線l上總存在點P,使得過點P所作的⊙O 的兩條切線互相垂直,則∠ACP的最大值等于__________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x2+mx+nx軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(1,0),C(0,2).

(1)求拋物線的表達式;

(2) 請你在拋物線的對稱軸上找點P,使△PCD是以CD為腰的等腰三角形,所有符合條件的點P的坐標分別為 ;

(3)點E是線段BC上的一個動點,過點Ex軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。

(1)從箱子中任意摸出一個球是白球的概率是多少?

(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,對隔離直線給出如下定義:點是圖形上的任意一點,點是圖形上的任意一點,若存在直線滿足,則稱直線是圖形隔離直線,如圖,直線是函數(shù)的圖像與正方形的一條隔離直線”.

1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形隔離直線的為 .

2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標軸平行,直角頂點的坐標是,⊙O的半徑為,是否存在與⊙O隔離直線?若存在,求出此隔離直線的表達式:若不存在,請說明理由;

3)正方形的一邊在軸上,其它三邊都在軸的左側(cè),點是此正方形的中心,若存在直線是函數(shù)的圖像與正方形隔離直線,請直接寫出的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案