如圖,兩條拋物線y1=-
1
2
x2+1,y2=-
1
2
x2-1
與分別經(jīng)過點(-2,0),(2,0)且平行于y軸的兩條平行線圍成的陰影部分的面積為( 。
A.8B.6C.10D.4

∵兩解析式的二次項系數(shù)相同,
∴兩拋物線的形狀完全相同,
∴y1-y2=-
1
2
x2+1-(-
1
2
x2-1)=2;
∴S陰影=(y1-y2)×|2-(-2)|=2×4=8,
故選A.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直角坐標系中,O為坐標原點,A點坐標為(-3,0),B點坐標為(12,0),以AB為直徑作⊙P與y軸的負半軸交于點C.拋物線y=ax2+bx+c經(jīng)過A、B、C三點,其頂點為M點.
(1)求此拋物線的解析式;
(2)設(shè)點D是拋物線與⊙P的第四個交點(除A、B、C三點以外),求直線MD的解析式;
(3)判定(2)中的直線MD與⊙P的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,拋物線y=x2-2x與直線y=3相交于點A、B,P是x軸上一點,若PA+PB最小,則點P的坐標為(  )
A.(-l,0)B.(0,0)C.(1,0)D.(3,0)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,將一塊含30°角的學生用三角板放在平面直角坐標系中,使頂點A、B分別放置在y軸、x軸上,已知AB=2,∠ABO=∠ACB=30°.
(1)求點A、B、C的坐標;
(2)求過A,B,C三點的拋物線解析式;
(3)在(2)中的拋物線上是否存在點P,使△PAB的面積等于△ABC的面積?若不存在,請說明理由;若存在,請你求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(A)拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,且當x=0和x=2時,y的值相等.直線y=3x-7與這條拋物線相交于兩點,其中一點的橫坐標是4,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設(shè)OQ的長為t,四邊形PQOC的面積為S.求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍.
(3)對于二次三項式x2-10x+36,小明同學作出如下結(jié)論:無論x取什么實數(shù),它的值都不可能等于11.你是否同意他的說法?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

己知:如圖1,拋物線y=ax2-2ax+c(a≠0)與y軸交于點C(O,-4),與x軸交于A、B兩點,點A的坐標為(4,0).
(1)求該拋物線的函數(shù)解析式;
(2)點P(t,O)是線段AB上一動點(不與A、B重合),過P點作PEAC,交BC于E,連接CP,求△CPE的面積S與t的函數(shù)關(guān)系式,并指出t的取值范圍;
(3)如圖2,若平行于x軸的動直線r與該拋物線交于點Q,與直線AC交于F,點D的坐標為(2,0).問是否存在這樣的直線r,使得△0DF為等腰三角形?若存在,請求出點Q坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場將進貨價為30元的臺燈以40元售出,平均每月能售出600個.市場調(diào)研表明:當銷售價為每上漲1元時,其銷售量就將減少10個.商場要想銷售利潤平均每月達到最大,每個臺燈的定價應為多少元?這時應進臺燈多少個?月銷售利潤最大為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=
3
3
x2+
2
3
3
x-
3
交x軸于A、B兩點,交y軸于點C,頂點為D.
(1)求點A、B、C的坐標;
(2)把△ABC繞AB的中點M旋轉(zhuǎn)180°,得到四邊形AEBC,求E點的坐標;
(3)試判斷四邊形AEBC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,用一段長為30米的籬笆圍成一個一邊靠墻(墻的長度不限)的矩形菜園ABCD,設(shè)AB邊長為x米,則菜園的面積y(米2)與x(米)的關(guān)系式為______.(不要求寫出自變量x的取值范圍)

查看答案和解析>>

同步練習冊答案