(2006•平?jīng)觯┤鐖D,AB∥CD,EG平分∠BEF,若∠2=60°,則∠1=    度.
【答案】分析:兩直線平行,內錯角相等,所以可求出∠BEG,根據(jù)角平分線性質,可求得∠BEF,最后根據(jù)鄰補角概念解答.
解答:解:∵AB∥CD,
∴∠2=∠BEG,
又∵EG平分∠BEF,
∴∠BEF=2∠BEG=2×∠2=2×60°=120°,
∴∠1=180°-120°=60°(平角定義).
故填60.
點評:本題考查的知識點為“兩直線平行,內錯角相等”和“角平分線的性質”.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•平?jīng)觯┤鐖D,在⊙M中,所對的圓心角為120°,已知圓的半徑為2cm,并建立如圖所示的直角坐標系.
(1)求圓心M的坐標;
(2)求經(jīng)過A,B,C三點的拋物線的解析式;
(3)點D是弦AB所對的優(yōu)弧上一動點,求四邊形ACBD的最大面積;
(4)在(2)中的拋物線上是否存在一點P,使△PAB和△ABC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年甘肅省張掖市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•平?jīng)觯┤鐖D,在⊙M中,所對的圓心角為120°,已知圓的半徑為2cm,并建立如圖所示的直角坐標系.
(1)求圓心M的坐標;
(2)求經(jīng)過A,B,C三點的拋物線的解析式;
(3)點D是弦AB所對的優(yōu)弧上一動點,求四邊形ACBD的最大面積;
(4)在(2)中的拋物線上是否存在一點P,使△PAB和△ABC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年甘肅省武威市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•平?jīng)觯┤鐖D,在⊙M中,所對的圓心角為120°,已知圓的半徑為2cm,并建立如圖所示的直角坐標系.
(1)求圓心M的坐標;
(2)求經(jīng)過A,B,C三點的拋物線的解析式;
(3)點D是弦AB所對的優(yōu)弧上一動點,求四邊形ACBD的最大面積;
(4)在(2)中的拋物線上是否存在一點P,使△PAB和△ABC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年甘肅省酒泉市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•平?jīng)觯┤鐖D,在⊙M中,所對的圓心角為120°,已知圓的半徑為2cm,并建立如圖所示的直角坐標系.
(1)求圓心M的坐標;
(2)求經(jīng)過A,B,C三點的拋物線的解析式;
(3)點D是弦AB所對的優(yōu)弧上一動點,求四邊形ACBD的最大面積;
(4)在(2)中的拋物線上是否存在一點P,使△PAB和△ABC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年甘肅省定西市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•平?jīng)觯┤鐖D,在⊙M中,所對的圓心角為120°,已知圓的半徑為2cm,并建立如圖所示的直角坐標系.
(1)求圓心M的坐標;
(2)求經(jīng)過A,B,C三點的拋物線的解析式;
(3)點D是弦AB所對的優(yōu)弧上一動點,求四邊形ACBD的最大面積;
(4)在(2)中的拋物線上是否存在一點P,使△PAB和△ABC相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案