【題目】如圖所示,若將類似于a、b、c、d四個圖的圖形稱做平面圖,則其頂點數(shù)、邊數(shù)與區(qū)域數(shù)之間存在某種關(guān)系.觀察圖b和表中對應(yīng)的數(shù)值,探究計數(shù)的方法并作答.
(1)數(shù)一數(shù)每個圖中各有多少個頂點、多少條邊,這些邊圍出多少個區(qū)域并填表:
平面圖 | a | b | c | d |
頂點數(shù)(S) | 7 | |||
邊數(shù)(M) | 9 | |||
區(qū)域數(shù)(N) | 3 |
(2)根據(jù)表中數(shù)值,寫出平面圖的頂點數(shù)、邊數(shù)、區(qū)域數(shù)之間的一種關(guān)系為 ;
(3)如果一個平面圖有20個頂點和11個區(qū)域,那么利用(2)中得出的關(guān)系可知這個平面圖有 條邊.
【答案】(1)填表見解析;(2)S+N-M=1;(3)30.
【解析】試題分析:(1)按照自己熟悉的規(guī)律去數(shù)頂點數(shù),邊數(shù)以及區(qū)域數(shù);
(2)4+3-6=1,7+3-9=1,8+5-12=1,10+6-15=1,所以可得到一般規(guī)律:頂點數(shù)+區(qū)域數(shù)一邊數(shù)=1;
(3)邊數(shù)=頂點數(shù)+區(qū)域數(shù)-1.
試題解析:(1)數(shù)一數(shù)每個圖中各有多少個頂點、多少條邊,這些邊圍出多少個區(qū)域并填表:
平面圖 | a | b | c | d |
頂點數(shù)(S) | 4 | 7 | 8 | 10 |
邊數(shù)(M) | 6 | 9 | 12 | 15 |
區(qū)域數(shù)(N) | 3 | 3 | 5 | 6 |
(2)觀察表中數(shù)據(jù)可得;4+36=1,7+39=1,8+512=1,10+615=1
∴S+NM=1;(或頂點數(shù)+區(qū)域數(shù)一邊數(shù)=1)
故答案為:S+NM=1;
(3)由(2)得:邊數(shù)=頂點數(shù)+區(qū)域數(shù)1=20+111=30.
故答案為:30.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對, 定義一種新運算,規(guī)定 (其中, 均為非零常數(shù)),這里等式右邊是通常的四則運算,例: .
已知, .
(1)求, 的值;
(2)若關(guān)于m的不等式組恰好有3個整數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx﹣4k+5的圖象與反比例函數(shù)y= (x>0)的圖象相交于點A(p,q).當(dāng)一次函數(shù)y的值隨x的值增大而增大時,p的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅同學(xué)在做作業(yè)時,遇到這樣一道幾何題:
已知:AB∥CD∥EF,∠A=110°,∠ACE=100°,過點E作EH⊥EF,垂足為E,交CD于H點.
(1)依據(jù)題意,補(bǔ)全圖形;
(2)求∠CEH的度數(shù).
小明想了許久對于求∠CEH的度數(shù)沒有思路,就去請教好朋友小麗,小麗給了他如圖2所示的提示:
請問小麗的提示中理由①是 ;
提示中②是: 度;
提示中③是: 度;
提示中④是: ,理由⑤是 .
提示中⑥是 度;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的是( )
A. 若∠C=∠A–∠B,則△ABC為直角三角形
B. 若a∶b∶c=2∶2∶2,則△ABC為直角三角形
C. 若a=c,b=c,則△ABC為直角三角形
D. 若∠A∶∠B∶∠C=3∶4∶5,則△ABC為直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場對一種新售的手機(jī)進(jìn)行市場問卷調(diào)查,其中一個項目是讓每個人按A(不喜歡)、B(一般)、C(不比較喜歡)、D(非常喜歡)四個等級對該手機(jī)進(jìn)行評價,圖①和圖②是該商場采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)以上統(tǒng)計圖提供的信息,回答下列問題:
(1)本次調(diào)查的人數(shù)為多少人?A等級的人數(shù)是多少?請在圖中補(bǔ)全條形統(tǒng)計圖.
(2)圖①中,a等于多少?D等級所占的圓心角為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點A在x軸的正半軸上,頂點B的坐標(biāo)為(3, ),點C的坐標(biāo)為(,0),點P為斜邊OB上的一個動點,則PA+PC的最小值為( )
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=10,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,AG=2.5,則△CEF的周長為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com