下列解方程中, 結論正確的是

[    ]

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

觀察下列方程及其解的特征:
(1)x+
1
x
=2的解為x1=x2=1;
(2)x+
1
x
=
5
2
的解為x1=2,x2=
1
2

(3)x+
1
x
=
10
3
的解為x1=3,x2=
1
3
;

解答下列問題:
(1)請猜想:方程x+
1
x
=
26
5
的解為
 
;
(2)請猜想:關于x的方程x+
1
x
=
 
的解為x1=a,x2=
1
a
(a≠0);
(3)下面以解方程x+
1
x
=
26
5
為例,驗證(1)中猜想結論的正確性.
解:原方程可化為5x2-26x=-5.
(下面請大家用配方法寫出解此方程的詳細過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

精英家教網(wǎng)一、請你閱讀下列計算過程,再回答所提出的問題:
題目計算
x-3
x2-1
-
3
1-x

解:原式=
x-3
(x+1)(x-1)
-
3
x-1
(A)
=
x-3
(x+1)(x-1)
-
3(x+1)
(x+1)(x-1)
(B)
=x-3-3(x+1)(C)
=-2x-6(D)
問題:(1)上述計算過程中,從
 
步開始出現(xiàn)錯誤;
(2)從(B)到(C)錯誤的原因是
 

(3)請你正確解答.
二、解方程
1-x
x-2
=
1
2-x
-2

三、如圖,?ABCD中,若∠EAD=∠BAF
(1)求證:△CEF是等腰三角形;
(2)△CEF的哪兩條邊之和恰好等于?ABCD的周長?證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解下列方程,將得到的解填入下面的表格中,觀察表格中兩個解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方  程 x1 x2 x1+x2 x1.x2
(1)
0
0
2
2
2
2
0
0
(2)
-4
-4
1
1
-3
-3
-4
-4
(3)
2
2
3
3
5
5
6
6
請同學們仔細觀察方程的解,你會發(fā)現(xiàn)方程的解與方程中未知數(shù)的系數(shù)和常數(shù)項之間有一定的關系.
一般的,對于關于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根為x1、x2
則x1+x2=
-p
-p
,x1.x2=
q
q

(2)運用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個根為x1,x2,則x1+x2的值為
B
B

A.-2     B.2     C.-7     D.7
②已知x1,x2是方程x2-x-3=0的兩根,利用上述結論,不解方程,求x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:013

下列解方程中,結論正確的是

[    ]

查看答案和解析>>

同步練習冊答案