【題目】(本小題滿分10分)如圖,在Rt△ABC中,∠ABC=90°AC的垂直平分線分別與AC,BCAB的延長線相交于點DE,F,且BF=BC⊙O△BEF的外接圓,∠EBF的平分線交EF于點G,交于點H,連接BDFH

1)求證:△ABC≌△EBF;

2)試判斷BD⊙O的位置關(guān)系,并說明理由;

3)若AB=1,求HGHB的值.

【答案】1)證明見試題解析;(2)相切,理由見試題解析;(3

【解析】

試題(1)由∠ABC=90°FD⊥AC,得到∠ABF=∠EBF,由∠DEC=∠BEF,得到∠DCE=∠EFB,從而得到△ABC≌△EBFASA);

2BD⊙O相切.連接OB,只需證明∠DBE+∠OBE=90°,即可得到OB⊥BD,從而有BD⊙O相切;

3)連接EA,EH,由DF為線段AC的垂直平分線,得到AE=CE,由△ABC≌△EBF,得到AB=BE=1,進(jìn)而得到CE=AE=,故,即可得出結(jié)論

又因為BH為角平分線,易證△EHF為等腰直角三角形,故,得到,再由△GHF∽△FHB,得到

試題解析:(1∵∠ABC=90°,∴∠CBF=90°,∵FD⊥AC,∴∠CDE=90°,∴∠ABF=∠EBF,∵∠DEC=∠BEF,∴∠DCE=∠EFB∵BC=BF,∴△ABC≌△EBFASA);

2BD⊙O相切.理由:連接OB,∵DFAC的垂直平分線,∴AD=DC∴BD=CD,∴∠DCE=∠DBE,∵OB=OF,∴∠OBF=∠OFB,∵∠DCE=∠EFB,∴∠DBE=∠OBF∵∠OBF+∠OBE=90°,∴∠DBE+∠OBE=90°∴OB⊥BD,∴BD⊙O相切;

3)連接EA,EH,∵DF為線段AC的垂直平分線,∴AE=CE,∵△ABC≌△EBF,∴AB=BE=1∴CE=AE=,,又∵BH為角平分線,∴∠EBH=∠EFH=45°,∴∠HEF=∠HBF=45°,∠HFG=∠EBG=45°,∴△EHF為等腰直角三角形,,,∵∠HFG=∠FBG=45°,∠GHF=∠GHF,∴△GHF∽△FHB,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】順次連接對角線相等的四邊形各邊中點,所得四邊形是( )

A. 矩形 B. 平行四邊形 C. 菱形 D. 任意四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知二次函數(shù)經(jīng)過點B3,0),C03),D4,-5

1求拋物線的解析式;

2ABC的面積;

3P是拋物線上一點,SABP=SABC,這樣的點P有幾個請直接寫出它們的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,是高線,,

(1)用直尺與圓規(guī)作三角形內(nèi)角的平分線(不寫作法,保留作圖痕跡).

(2)(1)的前提下,判斷①,②中哪一個正確?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是菱形的對角線,分別是邊的中點,連接,,則下列結(jié)論錯誤的是( )

A. B. C. 四邊形是菱形D. 四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,四邊形中,,點點出發(fā),沿折線運動,到點時停止,已知的面積與點運動的路程的函數(shù)圖象如圖②所示,則點從開始到停止運動的總路程為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ABy=kx+b經(jīng)過點B1,4)、A5,0)兩點,且與直線y=2x-4交于點C

1)求直線AB的解析式并求出點C的坐標(biāo);

2)求出直線y=kx+b、直線y=2x-4及與y軸所圍成的三角形面積;

3)現(xiàn)有一點P在直線AB上,過點PPQy軸交直線y=2x-4于點Q,若線段PQ的長為3,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB、AC邊的垂直平分線分別交BC邊于點MN

1)如圖①,若∠BAC110°,則∠MAN   °,若△AMN的周長為9,則BC 

2)如圖②,若∠BAC135°,求證:BM2+CN2MN2;

3)如圖③,∠ABC的平分線BPAC邊的垂直平分線相交于點P,過點PPH垂直BA的延長線于點H.若AB5,CB12,求AH的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,點沿邊從點向點的速度移動;同時,點從點沿邊向點的速度移動,設(shè)點、移動的時間為.問:

當(dāng)為何值時的面積等于?

當(dāng)為何值時是直角三角形?

是否存在的值,使的面積最小,若存在,求此時的值及此時的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案