【題目】已知函數(shù)m為常數(shù)).

(1)試判斷該函數(shù)的圖象與x軸的公共點(diǎn)的個(gè)數(shù);

(2)求證:不論m為何值,該函數(shù)的圖象的頂點(diǎn)都在函數(shù)的圖象上

(3)若直線y=x與二次函數(shù)圖象交于A、B兩點(diǎn),當(dāng)﹣4≤m≤2時(shí),求線段AB的最大值和最小值。

【答案】(1)2;(2)詳見解析;(3)當(dāng)m=0時(shí),=,當(dāng)m=-4時(shí),=8 .

【解析】試題分析:(1)表示出根的判別式,判斷其正負(fù)即可得到結(jié)果;

(2)將二次函數(shù)解析式配方變形后,判斷其頂點(diǎn)坐標(biāo)是否在已知函數(shù)圖象即可;

(3)聯(lián)立方程有:得:x2-(m-4x-2m=0 ,根據(jù)根與系數(shù)的關(guān)系求出(x1-x2)2==m2+16,解等腰直角三角形可得=,然后討論m的取值,求出線段AB的最大值和最小值。

解:(1)∵△=(m3)2+8m=(m+1)2+8>0,

則該函數(shù)圖象與x軸的公共點(diǎn)的個(gè)數(shù)為2個(gè),

(2)y=-x2+(m-3)x+2m

=-(x- 2+

x=代入y=x2+4x+6=(x+2)2+2

y=(+2)2+2=+2

=

則不論m為何值,該函數(shù)的圖像的頂點(diǎn)都在函數(shù)y=x2+4x+6的圖像上。

(3)設(shè)直線y=xy=-x2+(m-3)x+2m的交點(diǎn)為A(x1,y1)B(x2y2),聯(lián)立方程有:

得:x2-(m-4)x-2m=0

x1 + x2=m-4,x1x2=-2m

∴(x1-x2)2=(x1+x2)2-4x1x2

=(m-4)2-4(-2m)

=m2+16

(也可用求根公式求得該式)

=

﹣4≤m≤2

∴當(dāng)m=0時(shí),=,

當(dāng)m=-4時(shí),=8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB,坡面AC的傾斜角為45°.為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=3.若新坡角下需留3米寬的人行道,問離原坡角(A點(diǎn)處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414 ≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線的頂點(diǎn)為A.

(1)求點(diǎn)A的坐標(biāo);

(2)將線段沿軸向右平移2個(gè)單位得到線段

直接寫出點(diǎn)的坐標(biāo);

若拋物線與四邊形有且只有兩個(gè)公共點(diǎn),結(jié)合函數(shù)的圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)約能源,某城市開展了節(jié)約水電活動(dòng),已知該城市共有10000戶家庭,活動(dòng)前,某調(diào)查小組隨機(jī)抽取了部分家庭每月的水電費(fèi)的開支(單位:元),結(jié)果如左圖所示頻數(shù)直方圖(每一組含前一個(gè)邊界值,不含后一個(gè)邊界值);活動(dòng)后,再次調(diào)查這些家庭每月的水電費(fèi)的開支,結(jié)果如表所示:

(1)求所抽取的樣本的容量;

(2)如以每月水電費(fèi)開支在225元以下(不含)為達(dá)到節(jié)約標(biāo)準(zhǔn),請問通過本次活動(dòng),該城市大約增加了多少戶家庭達(dá)到節(jié)約標(biāo)準(zhǔn)?

(3)活動(dòng)后,這些樣本家庭每月水電費(fèi)開支的總額能否低于6000?

(4)請選擇一個(gè)適當(dāng)?shù)慕y(tǒng)計(jì)量分析活動(dòng)前后的相關(guān)數(shù)據(jù),并評價(jià)節(jié)約水電活動(dòng)的效果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓中的弦AB與弦CD垂直于點(diǎn)E,點(diǎn)F上, ,直線MN過點(diǎn)D,且∠MDCDFC,求證:直線MN是該圓的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,1),B(﹣22),C(﹣1,4),請按下列要求畫圖:

1)將△ABC先向右平移4個(gè)單位長度、再向下平移1個(gè)單位長度,得到△A1B1C1,畫出△A1B1C1;

2)畫出與△ABC關(guān)于原點(diǎn)O成中心對稱的△A2B2C2,并直接寫出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A表示﹣10,點(diǎn)B表示11,點(diǎn)C表示18.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿?cái)?shù)軸正方向以每秒2個(gè)單位的速度勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿?cái)?shù)軸負(fù)方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t為何值時(shí),P、Q兩點(diǎn)相遇?相遇點(diǎn)M所對應(yīng)的數(shù)是多少?

(2)在點(diǎn)Q出發(fā)后到達(dá)點(diǎn)B之前,求t為何值時(shí),點(diǎn)P到點(diǎn)O的距離與點(diǎn)Q到點(diǎn)B的距離相等;

(3)在點(diǎn)P向右運(yùn)動(dòng)的過程中,NAP的中點(diǎn),在點(diǎn)P到達(dá)點(diǎn)C之前,求2CN﹣PC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點(diǎn)H、G分別是邊CD、BC上的動(dòng)點(diǎn).連接AH、HG,點(diǎn)EAH的中點(diǎn),點(diǎn)FGH的中點(diǎn),連接EF.則EF的最大值與最小值的差為( )

A. 1 B. ﹣1 C. D. 2﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A,B,C,回答下列問題:

(1)若將點(diǎn)B向右移動(dòng)6個(gè)單位后,三個(gè)點(diǎn)所表示的數(shù)中最小的數(shù)是多少?

(2)在數(shù)軸上找一點(diǎn)D,使點(diǎn)DA,C兩點(diǎn)的距離相等,寫出點(diǎn)D表示的數(shù);

(3)在點(diǎn)B左側(cè)找一點(diǎn)E,使點(diǎn)E到點(diǎn)A的距離是到點(diǎn)B的距離的2倍,并寫出點(diǎn)E表示的數(shù).

查看答案和解析>>

同步練習(xí)冊答案