【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】
試題由四邊形ABCD是平行四邊形,得到∠ABC=∠ADC=60°,∠BAD=120°,根據(jù)AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等邊三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正確;由于AC⊥AB,得到SABCD=ABAC,故②正確,根據(jù)AB=BC,OB=BD,且BD>BC,得到AB<OB,故③錯(cuò)誤;根據(jù)三角形的中位線定理得到OE=AB,于是得到OE=BC,故④正確.
解:∵四邊形ABCD是平行四邊形,
∴∠ABC=∠ADC=60°,∠BAD=120°,
∵AE平分∠BAD,
∴∠BAE=∠EAD=60°
∴△ABE是等邊三角形,
∴AE=AB=BE,
∵AB=BC,
∴AE=BC,
∴∠BAC=90°,
∴∠CAD=30°,故①正確;
∵AC⊥AB,
∴SABCD=ABAC,故②正確,
∵AB=BC,OB=BD,且BD>BC,
∴AB<OB,故③錯(cuò)誤;
∵CE=BE,CO=OA,
∴OE=AB,
∴OE=BC,故④正確.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)老師為了了解學(xué)生在數(shù)學(xué)學(xué)習(xí)中常見(jiàn)錯(cuò)誤的糾正情況,收集了學(xué)生在作業(yè)和考試中的常見(jiàn)錯(cuò)誤,編制了10道選擇題,每題3分,對(duì)她所任教的初三(1)班和(2)班進(jìn)行了檢測(cè).如圖表示從兩班各隨機(jī)抽取的10名學(xué)生的得分情況:
(1)利用圖中提供的信息,補(bǔ)全下表:
班級(jí) | 平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) |
(1)班 | 24 | 24 | |
(2)班 | 24 |
(2)若把24分以上(含24分)記為“優(yōu)秀”,兩班各有60名學(xué)生,請(qǐng)估計(jì)兩班各有多少名學(xué)生成績(jī)優(yōu)秀;
(3)觀察圖中的數(shù)據(jù)分布情況,你認(rèn)為哪個(gè)班的學(xué)生糾錯(cuò)的整體情況更好一些?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是正六邊形ABCDEF的中心.
(1)找出這個(gè)軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸;
(2)這個(gè)正六邊形繞點(diǎn)O旋轉(zhuǎn)多少度后能和原來(lái)的圖形重合?
(3)如果換成其他的正多邊形呢?能得到一般的結(jié)論嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為保護(hù)美麗如畫(huà)的邛海濕地,西昌市污水處理廠決定先購(gòu)買(mǎi)兩型污水處理設(shè)備共20臺(tái),對(duì)濕地周邊污水進(jìn)行處理.每臺(tái)型污水處理設(shè)備12萬(wàn),每臺(tái)型污水處理設(shè)備10萬(wàn),已知2臺(tái)型污水處理設(shè)備和1臺(tái)型污水處理設(shè)備每周處理污水680噸,3臺(tái)型污水處理設(shè)備和2臺(tái)型污水處理設(shè)備每周處理污水1120噸.
(1)求每臺(tái)、型污水處理設(shè)備每周分別可以處理污水多少?lài)崳?/span>
(2)經(jīng)預(yù)算,污水處理廠購(gòu)買(mǎi)設(shè)備的資金不超過(guò)230萬(wàn)元,每周處理污水的量不低于4500噸,請(qǐng)列舉出所有購(gòu)買(mǎi)方案,并指出所需購(gòu)買(mǎi)資金最少的方案及最少資金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題
(1)閱讀理解:如圖①,在四邊形ABCD中,AB∥DC,E是BC的中點(diǎn),若AE是∠BAD的平分線,試判斷AB,AD,DC之間的等量關(guān)系.
解決此問(wèn)題可以用如下方法:延長(zhǎng)AE交DC的延長(zhǎng)線于點(diǎn)F,易證△AEB≌△FEC,得到AB=FC,從而把AB,AD,DC轉(zhuǎn)化在一個(gè)三角形中即可判斷.
AB、AD、DC之間的等量關(guān)系為;
(2)問(wèn)題探究:如圖②,在四邊形ABCD中,AB∥DC,AF與DC的延長(zhǎng)線交于點(diǎn)F,E是BC的中點(diǎn),若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,并證明你的結(jié)論.
(3)問(wèn)題解決:如圖③,AB∥CF,AE與BC交于點(diǎn)E,BE:EC=2:3,點(diǎn)D在線段AE上,且∠EDF=∠BAE,試判斷AB、DF、CF之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,是的中點(diǎn).點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為.設(shè)點(diǎn)的運(yùn)動(dòng)速度為,若使得,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“2017年張學(xué)友演唱會(huì)”于6月3日在我市觀山湖奧體中心舉辦,小張去離家2520米的奧體中心看演唱會(huì),到奧體中心后,發(fā)現(xiàn)演唱會(huì)門(mén)票忘帶了,此時(shí)離演唱會(huì)開(kāi)始還有23分鐘,于是他跑步回家,拿到票后立刻找到一輛“共享單車(chē)”原路趕回奧體中心,已知小張騎車(chē)的時(shí)間比跑步的時(shí)間少用了4分鐘,且騎車(chē)的平均速度是跑步的平均速度的1.5倍.
(1)求小張跑步的平均速度;
(2)如果小張?jiān)诩胰∑焙蛯ふ摇肮蚕韱诬?chē)”共用了5分鐘,他能否在演唱會(huì)開(kāi)始前趕到奧體中心?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系xOy.△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(4,4),請(qǐng)解答下列問(wèn)題:
(1)將△ABC向下平移5個(gè)單位長(zhǎng)度,畫(huà)出平移后的A1B1C1,并寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);
(2)畫(huà)出△A1B1C1關(guān)于y軸對(duì)稱(chēng)的△A2B2C2;
(3)將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后的△A3B3C.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com